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Abstract

We consider a setting in which privately informed agents are located in a network
and trade a risky asset with other agents with whom they are directly connected. We
compare the performance, both theoretically and experimentally, of a complete net-
work (centralized market) to incomplete networks with differing levels of connectivity
(decentralized markets). We show that decentralized markets can deliver higher in-
formational efficiency, with prices closer to fundamentals, as well as higher welfare for
mean-variance investors.
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1 Introduction

In the classical paradigm of financial markets, all buyers can freely trade with all sellers,
and all of their trades clear via a centralized market mechanism that matches demand and
supply. In reality, though, many markets are decentralized and fragmented, whereby not all
traders are fully “connected” to each other. Fragmentation may occur because of information
or transaction costs, which limit the ability or willingness of some market participants to
interact and trade with others.

Examples of decentralized markets include over-the-counter (OTC) markets in which
many financial assets (e.g., foreign exchange, interest-rate and other derivatives, municipal
and corporate bonds, bank loans, private equity and real estate) and most durable goods
are traded. In an OTC financial market, investors trade directly with a limited set of other
investors and negotiate terms privately, often facing incomplete information about the prices
effective elsewhere in the market. Investors may buy or sell from dealers, thus improving
overall market connectivity, but each customer typically approaches only a subset of the
dealers in the market. Dealers also trade with each other to balance inventory and meet
liquidity needs, but like customers, each dealer only interacts with a subset of other dealers.

Financial regulators have voiced increasingly serious concerns about (the size of) OTC
markets, and the potential risks to the overall financial system that they create. Following the
disruption of several OTC markets during the financial crisis of 2008 (e.g., credit derivatives,
asset-backed securities, and repo agreements), many commentators and policy makers argued
that decentralized trading was to blame for the inability of traders to quickly identify the
prices of some assets, increasing the severity of the crisis. In response, the Group of Twenty
(G20) committed to a variety of far-reaching regulatory reforms to contain the threat posed
by OTC trading to the financial system, including a move to trading securities on centralized,
fully connected exchanges, where other financial assets like stocks are traded (G20 (2009)).

The main argument against decentralized markets is their presumed inability to aggre-
gate and reveal privately dispersed information sufficiently quickly. The common wisdom is
that such impediments to price discovery, combined with lack of transparency and limited
opportunities for exploiting gains from trade, make investors worse off.

In this paper, we show that decentralized markets can outperform centralized markets in
terms of both informational efficiency and welfare. We propose a model of asset trading in a
network. A centralized market is one in which the network is complete, or fully connected,
wherein each trader has a link with every other trader. A decentralized market corresponds
to an incomplete network, in which some of the potential links are missing.1 Our model

1Networks are a natural tool to model decentralized trade and intermediation. In decentralized markets,
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features common values and asymmetric information. With fully rational agents, this setup
would lead to full revelation of private information and very little trade. We assume instead,
following Pederson (2022), that some agents do not update their beliefs while others use
a heuristic updating rule. More specifically, informed agents, who have either positive or
negative information about the value of the asset, do not update. Uninformed agents, in
contrast, update by repeatedly averaging their own beliefs with those of their neighbors in
the network.

We show that a decentralized market, corresponding to an incomplete network such as
the star, core-periphery network, or random network with some missing links, is more infor-
mationally efficient than a centralized market, corresponding to a fully connected network.
Furthermore, decentralization lowers the variance of payoffs which, under the assumption of
mean-variance preferences, translates into higher welfare. These results continue to hold, at
least in the short term, even when all agents engage in heuristic learning.

The intuition is as follows. In a setting with noisy private information, some agents are
misinformed about the asset payoff. Even if these agents are very few in number compared
to other agents who have accurate information or are uninformed, they can exert a dispro-
portionate influence on prices as well as on the variance of payoffs. The reason is that agents,
naturally, seek trading opportunities that present high perceived gains from trade, and these
are precisely those opportunities that involve agents with “extreme” beliefs. A complete
network gives agents access to counterparties with the full spectrum of beliefs, including (ex-
treme) beliefs that are incorrect. Instead, an incomplete network precludes trades with some
agents, and especially with misinformed agents who are in a minority. This leads to fewer
trades with misinformed agents, pushing prices closer to the fundamental, and reducing the
variance of payoffs.

We provide experimental evidence in support of the theoretical results. Experimental
methods are particularly suitable for testing the performance of decentralized markets, as
they can incorporate some of the inherent complexities of such markets. Field work is limited
in this task due to the unobservability of crucial market variables, such as the fundamental
value of financial assets and the distribution of information among traders. The experimental
approach allows us to exogenously control traders’ private information and trading partners,
while informational efficiency and payoffs can be directly measured.

stable buyer-seller trading relationships are usually formed. These relationship can be described by a graph
or network, in which the nodes correspond to traders and the edges represent potential (or realized) trading
relationships between pairs. When the network is complete, every possible trading opportunity is present
and therefore there is no constraint on trading patterns. In an incomplete network, some traders are unable
to trade with each other. This implies either a loss of trading opportunities or the need for an intermediary
between traders who are not directly linked to each other.
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The information structure in our experiments mimics that of the model. Subjects can buy
and/or sell an asset via a personalized limit order book, in which they can see, and match, the
bids and asks of the traders they are linked to in the trading network. This design feature,
used in reality in some foreign exchange markets, allows us to change the connectivity of
the market, spanning from fully connected centralized markets to decentralized markets
with different levels of connectivity, without changing the price formation mechanism.2 We
find that, despite having lower trading volume, decentralized markets deliver both higher
informational efficiency and higher welfare (lower variance of payoffs).

In addition to offering support for the predictions of the model, the experiments provide
a number of insights into trading behavior. While agents tend to trade in the direction
that their private information suggests, as in the model, this is much more pronounced
in centralized markets. In addition, in centralized markets, correctly informed agents trade
faster (in the direction that is indicated by their private information), and thus benefit further
from prices that are further away from fundamentals. These are the channels through which
centralization leads to higher payoff differentials across agents, and hence higher welfare
ex ante. Interestingly, the primary determinant of the payoff of an agent is her private
information, not the number of links she has in the network.

In sum, our paper contributes to the literature, which we review in the next section,
by showing that limited connectivity may not lead to inferior performance. In fact, fewer
connections can result in prices that better reflect fundamentals, and payoffs that are less
variable, thus making traders better off. We first put forward a novel mechanism through
which restrictions on trading opportunities can increase informational efficiency and welfare.
We then provide experimental evidence corroborating the results of the theoretical model.

2 Literature Review

2.1 Theory

There is a growing literature on trading in networks; see, for example, Kranton and Minehart
(2001), Gale and Kariv (2007), Gofman (2014), Condorelli et al. (2017) and Babus and
Kondor (2018), all of which feature agents with private (possibly correlated) values. With
the exception of Babus and Kondor (2018), these papers do not study informational efficiency.
In Babus and Kondor (2018), prices are generally not constrained informationally efficient if
the network is incomplete, but full revelation is obtained in the common values limit. They

2Several platforms in the foreign exchange spot market use a similar arrangement, or quasi-centralized
limit order book structure, including Reuters, EBS, and Hotspot FX, which together facilitate a mean
turnover in excess of $0.6 trillion each day (Gould et al. (2017)).
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do not analyze the effect of connectivity on informational efficiency or welfare as we do in
this paper.

Instead of Bayesian learning as in Babus and Kondor (2018), we assume that learning
is heuristic as in Pederson (2022), which builds on the repeated linear updating model of
DeGroot (1974). In Pederson (2022) beliefs evolve independently of trades and prices.3

Agents have common values and are either “hardheaded” and do not update their beliefs4

(after some point), or “naive” and update by computing an average of their own belief and
those of a subset of other agents. The beliefs of a naive agent, assuming that she is influenced
directly or indirectly by one or more hardheaded agents, converge to a convex combination
of hardheaded views. Other papers that employ DeGroot learning include DeMarzo et al.
(2003), who provide a rationale for this type of learning as a behavioral heuristic, and Golub
and Jackson (2010). Experimental evidence in support of DeGroot learning can be found in
Chandrasekhar et al. (2020).

There are other papers that study asset trading by agents who learn through communi-
cation in a social network (Colla and Mele (2010), Ozsoylev and Walden (2011), Han and
Yang (2013)). In contrast to our setup, trading in these models is in a centralized market.

In this paper we view a decentralized market as an incomplete network. There is a large
literature that takes a different approach, modeling decentralization as pairwise trading
with random matching. Models that feature asymmetric information and learning include
Wolinsky (1990) and Blouin and Serrano (2001), where equilibrium is not fully revealing,
and Duffie and Manso (2007) and Golosov et al. (2014), where there is full revelation.

Our result that decentralized markets can lead to higher informational efficiency and
welfare complements other possible advantages of decentralization that have been identified
in the literature. Malamud and Rostek (2017), Chen and Duffie (2021) and Rostek and Yoon
(2021) model decentralized markets as multiple exchanges on which imperfectly competitive
and symmetrically informed agents trade. They find that multiple exchanges can lead to a
more efficient allocation of risk compared to a single exchange. Glode and Opp (2017) show
that trading via a chain of intermediaries can improve efficiency by reducing the information
asymmetry between direct counterparties.

2.2 Experimental Work

A broad experimental literature studies market efficiency in the presence of asymmetric
information (in centralized markets). Mirroring the theoretical work, this literature has in-

3Beliefs can be calculated independently of trades and prices in Babus and Kondor (2018) as well.
4Another model in which some agents do not update their beliefs, or update them slowly, is Eyster et al.

(2019). Unlike Pederson (2022), other agents in this model use Bayesian updating.
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corporated information asymmetries in two principal ways. The first is to provide some (but
not all) traders with perfect information. Early studies in this tradition indicate that mar-
kets have a strong tendency to disseminate private information (Plott and Sunder (1982),
Sunder (1992)). The alternative modeling choice is to provide all traders with heterogeneous
information. When private information is imperfect, experiments have shown that informa-
tion dissemination may be slow (Plott and Sunder (1988), Forsythe and Lundholm (1990),
Lundholm (1991)). Later studies have confirmed that information dispersed in the market
is only imperfectly incorporated into experimental prices (Biais et al. (2005), Hanson et al.
(2006), Veiga and Vorsatz (2010), Corgnet et al. (2015, 2023)).

Bossaerts et al. (2014) compare the predictions of competitive and strategic rational
expectations models. Their results support the latter in the dynamics and the former in the
final prices. Filippin and Mantovani (2023) find that prices do not vary with risk aversion
and are close to the risk-neutral benchmark. Ruiz-Buforn et al. (2021a,b) show that the
disclosure of incorrect public information can drive prices far from fundamentals, even when
correct private information available in the market is sufficient to offset misleading public
information. This is consistent with one of the results that we obtain in this paper.

Some papers in the literature share a few design features with ours. Page and Siemroth
(2021) use an information structure and trading mechanism that are similar to those in our
experiments. They quantify the extent to which prices reflect private or public information
in centralized markets. The objectives of our paper are different — we do not focus on mea-
suring informational (in)efficiency per se but on comparing it across markets with different
levels of connectivity.

Cason and Friedman (2008) compare the performance of the continuous double auction
(CDA) trading mechanism, which we use in this paper, with the uniform price double auction
(UPDA), the single call market (SCM), and the multiple call market (MCM). They show that
while allocative efficiency is higher in CDA and MCM sessions, mean prices deviate the least
from the competitive equilibrium prediction in the SCM. This suggests that an increase in
transaction opportunities afforded by some market arrangements does not necessarily lead to
higher informational efficiency. Our results, using a different approach, are in line with this
evidence. Other papers that compare alternative trading mechanisms include Schnitzlein
(1996), Theissen (2000) and Attanasi et al. (2016).

Halim et al. (2019) study incentives to acquire costly information in a setting where agents
learn from their neighbors in a social communication network. They show that information
sharing increases trading volume. While information aggregation improves with the density
of the information network, prices are actually less informative. This is because fewer signals
are purchased as a result of the free riding incentive provided by the information sharing
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mechanism. The crucial difference of their setup in comparison to ours is the role of the
network. In their experimental design, the network affects learning but has no impact on
trading opportunities. The asset market itself is centralized. In our setting, the network
affects learning as well, but of greater importance is how it constrains trading behavior.

Going beyond the study of centralized markets, as in the papers cited above, Asparouhova
and Bossaerts (2017) investigate the efficiency properties of OTC markets which involve bi-
lateral exchanges with transaction prices known only to the trading counterparties. They
find that, while prices in the OTC market fluctuate within a narrow band around the ratio-
nal expectations equilibrium benchmark, prices in the centralized market are closer to this
benchmark. Thus the OTC market is somewhat worse than the centralized market in terms
of informational efficiency. But welfare is higher in the OTC market because revelation of
information in the centralized market destroys risk-sharing opportunities. The main differ-
ences between our paper and theirs are twofold. First, trading in our setting is primarily
driven by heterogeneity in beliefs, while in theirs it is heterogeneity in endowments. Second,
we study the effects of different degrees of market connectivity, while they compare bilateral
exchanges with centralized trading.

3 Theory

We now introduce the model. Our goal is to construct a model of asset trading in a network,
where trades are motivated by differences in information, rather than by heterogeneous
values (or noise trade) or differences in endowments or risk aversion. It is well-known that
if agents have rational expectations, then trading cannot be sustained by differences in
information alone (Milgrom and Stokey (1982)). In Babus and Kondor (2018), where agents
with heterogeneous values engage in bilateral trading in a network, there is no trade in the
common values limit of the model, for any network.

Instead of learning from prices and Bayesian updating, we propose a model in which
belief formation is as in Pederson (2022). In particular, we assume that informed agents
(whose private information may or may not be correct ex post) do not update their beliefs,
while uninformed agents follow a heuristic updating rule that involves repeatedly averaging
their previous beliefs with those of their neighbors (see the literature review in Section 2.1
for further discussion of heuristic learning).

After presenting the model, we analyze the evolution of beliefs and prices in the complete
network and the star network. We then compare the performance of these two networks, in
terms of both informational efficiency and welfare. Finally, we discuss the assumptions of
the model and possible extensions.
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3.1 A Model of Trading in a Network

3.1.1 Main features

The model features a single risky asset with random payoff V that takes value VH or VL
(VH > VL) with equal probability. There are N agents, each of whom receives two signals
prior to trade. Each signal si takes value VH or VL, and satisfies

Prob(V = VH |si = VH) = Prob(V = VL|si = VL) = q, (1)

where q ∈ (1/2, 1). The signals {si}2N
i=1 are independent conditional on V . Let NH be the

number of agents who receive two high signals, NL the number of agents who receive two
low signals, and NU the number of agents who receive conflicting signals. We refer to these
agents as optimists (or H agents), pessimists (or L agents), and uninformed agents (or U
agents), respectively. The labeling of agents who receive conflicting signals as “uninformed”
is due to the following result, which says that conflicting signals are equivalent to no signal
at all (all proofs are in the Appendix):

Lemma 3.1 (Conflicting signals) The probability distribution of V conditional on two
conflicting signals is the same as the unconditional distribution, i.e. Prob(V = VH |s1 =
VH , s2 = VL) = Prob(V = VH) = 1/2.

The conditional distribution of the asset payoff for optimists or pessimists is not the same as
the unconditional distribution. Accordingly, we refer to these agents collectively as informed
agents. We use the symbols NH , NL and NU to also denote the index sets of H, L and U
agents, respectively. Thus, for example, agent i ∈ NU is an uninformed agent. We assume
that there is at least one agent of each type, and that there are more “correctly informed
agents” than “misinformed agents”, i.e. NH > NL if V = VH , and NH < NL if V = VL.5

Agents are linked to each other through a network. For tractability we adopt a discrete-
time framework, with dates t = 0, 1, 2. . . ., along which beliefs and prices evolve. We now
discuss how we model beliefs, and then turn to trades and prices.

3.1.2 Beliefs

The belief of an agent at any date is the value that she assigns to the asset at that date.
We assume that optimists value the asset at VH , and pessimists value the asset at VL, at all

5Given the signal-generating mechanism, this assumption is likely to be satisfied. Conditional on V = VH ,
the expected number of optimists, pessimists and uninformed agents is q2N , (1 − q)2N and 2q(1 − q)N ,
respectively. If q = 0.8 and N = 15, these numbers are 9.6, 0.6 and 4.8.
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dates. Thus optimists and pessimists do not update their beliefs. We choose their beliefs to
be VH and VL respectively for convenience; the analysis is unaffected if the belief of optimists
is E(V |s1 = s2 = VH), and that of pessimists is E(V |s1 = s2 = VL).6 We denote the belief
of an uninformed agent i ∈ NU at date t by V i

U(t). We assume that initially all uninformed
agents have the same belief, given by V i

U(0) = (VH + VL)/2 for all i. This is motivated by
Lemma 3.1, though we do not assume Bayesian updating. After date 0, each uninformed
agent updates her belief by averaging her own belief with the beliefs of each of her neighbors
in the previous period. We will make this precise below. The setup for belief formation that
we have described follows Pederson (2022). In Pederson’s terminology, informed agents, both
optimists and pessimists, are “fanatics”, while uninformed agents are “naive”.

We order the agents so that the uninformed (indexed by U) come first, followed by
optimists (indexed by H), and then by pessimists (indexed by L). The evolution of beliefs
of all agents is determined by an N ×N adjacency matrix A, which is a nonnegative matrix
with all row sums equal to one. The vector of beliefs at date t, for t = 1, 2, . . ., is given by
A times the vector of beliefs at date t− 1. The adjacency matrix takes the form

A =


AU AH AL

0 I 0
0 0 I

 , (2)

where AU is NU×NU , AH is NU×NH , and AL is NU×NL. The matrix A defines a “listening
structure” in the language of DeMarzo et al. (2003); the ij’th element of A is the weight
that agent i puts on the belief of agent j. An uninformed agent listens to herself as well as
to all her neighbors in the network, and puts equal weight on her own belief and that of each
of her neighbors. An informed agent listens only to herself, and thus puts a weight equal to
one on her own belief. We assume that any uninformed agent is influenced by at least one
informed agent, either directly or indirectly through other agents in the network.

In order to generate dispersion in beliefs, some restriction on learning is necessary. If
informed agents learn as well, all beliefs converge to a consensus belief (DeMarzo et al.
(2003)). In fact, if informed agents put equal weight on their own beliefs and those of their
neighbors (just like the uninformed), and the network is complete, it takes only one round
of updating to reach a consensus belief. It is just the equally weighted average of all initial
beliefs. Later we will allow for learning by informed agents.

Since informed agents do not update their beliefs, we can focus on just the beliefs of
uninformed agents. Let ṼU(t) = (V i

U(t))i∈NU
be the vector of beliefs of uninformed agents

6The assumption that optimists and pessimists do not update their beliefs is more persuasive the higher
is q. For q = 0.8, Prob(V = VH |s1 = s2 = VH) = Prob(V = VL|s1 = s2 = VL) = 0.94.
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at date t. Also, let V i
U(∞) := limt→∞ V

i
U(t), the limiting belief of uninformed agent i, and

ṼU(∞) := (V i
U(∞))i∈NU

, the corresponding limiting belief vector. Let 1m be an m-vector of
ones. Applying Proposition 1 in Pederson (2022), we obtain the following result:

Proposition 3.2 (General network: Beliefs) The beliefs of uninformed agents for t ≥ 1
are given by

ṼU(t) = AtU1NU

VH + VL
2 +

t−1∑
k=0

AkU(AH1NH
VH + AL1NL

VL), (3)

and
ṼU(∞) := lim

t→∞
ṼU(t) = (I − AU)−1(AH1NH

VH + AL1NL
VL). (4)

Thus the belief of an uninformed agent converges to a convex combination of VH and VL,
not necessarily the same for all uninformed agents.

3.1.3 Trades and prices

Beliefs evolve independently of trades and prices, just as in Pederson (2022). However, unlike
Pederson (2022), where trading is Walrasian, we assume that agents arrive sequentially and
one unit is traded at each date, similar to the trading environment in Glosten and Milgrom
(1985). At each time t. t = 1, 2, . . ., one agent is chosen at random and she trades with one
of her neighbors. The neighbor she chooses to trade with is the one whose belief is furthest
away from her own belief, thus maximizing the gains from trade. In the case of ties, she
chooses her trading partner at random. Each trade involves the exchange of one unit of the
asset, with the buyer being the agent who values the asset more. There are no short-sale
constraints. Once the agent chosen to trade at t has traded, she returns to the pool of all
agents and may be chosen again in the future. The probability of an agent of a particular
type being chosen to trade is equal to the proportion of agents of that type in the population.
Thus an H (resp. L, U) agent is chosen with probability NH/N (resp. NL/N , NU/N).

We assume that any agent who is chosen to trade extracts a fraction α ∈ (0, 1] of the
surplus (the difference between her belief and that of her counterparty).7 Let pXY be the
price that arises when X is chosen to trade and she trades with Y (where X and Y are H,
L or U). We have pXY = (1 − α)VX + αVY , where VX and VY are the beliefs of X and Y
respectively. We use this pricing rule even when the beliefs of the two agents are the same.
This is motivated by the fact that there would be gains from trade if the two agents differ
slightly in their endowments or risk aversion, and any split of these gains would imply a price

7We exclude α = 0 since this is a degenerate case where the agent chosen to trade is indifferent between
not trading and trading with any of her neighbors.
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close to the common belief. We can think of the price as the outcome of Nash bargaining,
where α is the bargaining power of the agent chosen to trade. If α = 1/2, both parties to
the trade have the same bargaining power and they split the surplus equally. If α = 1, the
price is equal to the belief of the counterparty that the chosen agent trades with. This case
describes a competitive market in which each agent quotes a price that is equal to her own
belief, so that any agent chosen to trade faces a competitive bid-ask spread, and trades are
executed at the best bid or ask price. If the network is complete, all agents face the same
bid-ask spread.

Trades between two informed agents result in the same price regardless of the network
and the date, given by

pHH = VH , (5)

pLL = VL, (6)

pHL = (1− α)VH + αVL = VH − α(VH − VL), (7)

pLH = αVH + (1− α)VL = VL + α(VH − VL). (8)

For a pairing involving an uninformed agent, the price depends on the network and date,
and in general also on the position of the uninformed agent in the network.

From now on, we focus on the analysis of the case where V = VH . Then the optimists
are correctly informed, the pessimists are misinformed, and there are more optimists than
pessimists. The case of V = VL is completely analogous, involving only a relabeling.

3.2 Network Structures: Beliefs and Prices

In this section we analyze the evolution of beliefs and prices in the complete network and the
star, which represent the two extremes of a centralized market and a maximally decentralized
market. In the complete network, every agent has a link with every other agent. In the star,
there is a central agent or center who is chosen at random. The central agent has a link with
all other agents, while a noncentral agent has only one link, with the center. In the next
section, we will compare the performance of these two network structures.

We show in the Online Appendix that the results for the star, and for the comparison
of the star with the complete network, generalize to a core-periphery network defined as
follows. There are M agents in the core and the remaining N −M in the periphery. An
agent in the core has a link with every other agent in the core; thus the core is a complete
subnetwork. In addition, each agent in the core has a link with K := (N −M)/M agents in
the periphery; this is the “clientele” of this core agent. All agents in the core have a clientele
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of the same size, and these clienteles do not overlap. An agent in the periphery has only one
link, with the core agent whose clientele she belongs to.

3.2.1 Complete network

Recall that each uninformed agent puts equal weight on her own belief and the beliefs of each
of her neighbors. For the complete network, this means that every element of AU , AH and
AL is 1/N . We denote the belief of agent i ∈ NU in the complete network by

c

V i
U . Applying

Proposition 3.2, we obtain the following result:

Proposition 3.3 (Complete network: Beliefs) In the complete network, all uninformed
agents have the same beliefs:

c

V i
U(t) =

c

VU(t), for all i ∈ NU , t ≥ 0, where

c

VU(t) := V̄ −
(
NU

N

)t NH −NL

NH +NL

VH − VL
2 ,

and
V̄ := NHVH +NLVL

NH +NL

.

The belief
c

VU(t) is strictly increasing in t, and limt→∞
c

VU(t) = V̄ .

Thus the beliefs of uninformed agents get closer to the true value VH over time, converging
to the belief of the “representative informed agent”, V̄ .

Let c
pt denote the price in the complete network at t, t ≥ 1, and c

p∞ the limiting price.
For t ≥ 1, the belief of the uninformed,

c

VU(t), is closer to VH than to VL. Hence, when U is
chosen to trade she always trades with L. When H is chosen she trades with L, and when
L is chosen she trades with H. The next proposition characterizes the expected price.

Proposition 3.4 (Complete network: Prices) In the complete network, E( c
pt) is strictly

increasing in t for t ≥ 1, and converges to

E( c
p∞) = V̄ − α VH − VL

N(NH +NL)
[
N(NH −NL) +NLNU

]
. (9)

The expected price gets closer to the true value of the asset over time, but remains below
V̄ , the limiting average belief of all agents, at every date. Note that all trades involve L.
This is the reason for the inefficiency of the complete network, in both the informational and
welfare sense, as we shall show later.
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3.2.2 Star network

There are three possible stars, with H, L, or U at the center, which we refer to as the H-star,
the L-star and the U -star, respectively. The star is an H-star with probability NH/N , an
L-star with probability NL/N , and a U -star with probability NU/N .

The beliefs of an uninformed agent in the star depend on whether she is at the center or
not, and in the latter case they also depend on the type of agent at the center. We denote the
belief of the uninformed at date t in the H-star and L-star by

?

V H
U (t) and

?

V L
U (t), respectively.

In the U -star, we denote the belief of the uninformed agent at the center by
?

V U
Ŭ

(t), and that
of any other uninformed agent by

?

V U
U (t).

Proposition 3.5 (Star network: Beliefs) In the star network, the beliefs of uninformed
agents, for t ≥ 0, are as follows:

i. In the H-star,
?

V H
U (t) = VH −

1
2t+1 (VH − VL),

which is strictly increasing in t, and limt→∞
?

V H
U (t) = VH .

ii. In the L-star,
?

V L
U (t) = VL + 1

2t+1 (VH − VL),

which is strictly decreasing in t, and limt→∞
?

V L
U (t) = VL.

iii. In the U-star, both
?

V U
Ŭ

(t) and
?

V U
U (t) are increasing in t, and converge to V̄ as t→∞.

iv. The expected belief of an uninformed agent is strictly increasing in t, and converges to
V̄ as t→∞.

If H or L is at the center, uninformed agents repeatedly average their beliefs with the
unchanging beliefs of the center, converging monotonically to that unchanging belief. The
expected belief of an uninformed agent, where the expectation is taken over the H-star,
L-star and U -star, increases over time and converges to V̄ , just as in the complete network
(see Proposition 3.3).

Next, we turn to prices in the star, which we denote by ?
p. We first calculate the expected

price in each of the three possible stars, the H-star, the L-star and the U -star. Then we
average these expected prices, using the probabilities NH/N , NL/N and NU/N , to obtain
the overall expected price in the star. In each of the three stars, the price is random and
depends on whether the agent chosen to trade is at the center, and if she is not at the center,
what her type is. If the agent chosen to trade is at the center, she trades in the same way
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as in the complete network, since she is linked to all other agents. However, if the chosen
agent is not at the center, she has no choice but to trade with the center.

Proposition 3.6 (Star network: Prices) In the star network, E( ?
pt) is strictly increasing

in t for t ≥ 1, and converges to

E( ?
p∞) = V̄ − α VH − VL

N2(NH +NL)
[
N(NH −NL) +NLNU

]
. (10)

Like the complete network, the star network becomes more informationally efficient over
time. Even though the expected belief of an uninformed agent converges to V̄ in both
networks, the limiting expected price is not the same.

3.3 Comparison of Network Performance

In this section we use the results of Sections 3.2.1 and 3.2.2 to assess the performance of the
complete network relative to the star, in terms of informational efficiency and welfare.

3.3.1 Informational efficiency

Consider a network with price process {pt}. Let

It := −|pt − V |. (11)

Our measure of informational efficiency at date t is E(It). Given that our analysis is for the
case in which the realized value of V is VH , we must have pt ≤ VH , so that It = pt − VH .
Hence informational efficiency at date t is

E(It) = E(pt)− VH .

Thus a higher expected price at a given date means higher informational efficiency at that
date.

We will also have occasion to consider informational efficiency averaged over a period of
time, or equivalently, averaged over a number of transactions. Let

I := 1
T

T∑
t=1
It. (12)
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We measure average informational efficiency over T transactions by E(I), which is given by

E(I) = 1
T

T∑
t=1

[E(pt)]− VH .

Now we compare the star and the complete network in terms of informational efficiency:

Proposition 3.7 (Star vs complete network: Informational efficiency)

i. The star network is asymptotically more informationally efficient than the complete
network, i.e. E( ?

p∞) > E(( c
p∞).

ii. Suppose α ≥ 1/2. Then the star network is more informationally efficient than the
complete network at every date, i.e. E( ?

pt) > E( c
pt) for all t ≥ 1.

Part (i) is immediate from (9) and (10). Part (ii) is a stronger result that holds under the
assumption that an agent chosen to trade has at least as much bargaining power as any
counterparty (α ≥ 1/2). In the complete network, the misinformed L agents have a bigger
influence on the price. This is because whenever H or U is chosen to trade, she prefers to
trade with L. In the star, on the other hand, if H or U is chosen and she is not at the center,
she must trade with the center, even if the center is not L. This is partially offset by the
case in which L is chosen to trade and she is not at the center; she must then trade with
the center even if it is occupied by L or U . But the probability of L being chosen to trade
is lower than that of H. This turns out to be sufficient for the expected price in the star to
be higher than in the complete network.

3.3.2 Welfare

We compare welfare across networks for a static economy in which trades are based on the
limiting beliefs of agents as t→∞ (later we will define welfare for a dynamic economy, and
use that for welfare comparisons). We assume that agents have mean-variance preferences,
with risk aversion r that is low enough to ensure that any agent is willing to buy or sell one
unit when chosen to trade. We continue to assume, as above, that the realized value of V
is VH . Then, if the transaction price is p, the payoff of the buyer is VH − p and that of the
seller is p− VH . The price p is random and depends on the agent chosen to trade, as well as
on the counterparty that this agent trades with.

We measure welfare by
W := E(Π̃)− rVar(Π̃),

where Π̃ is the ex ante payoff of an agent before trading begins and before she knows what
her type is (H, L or U). We can think of Π̃ as being equal to the random value Π or −Π,
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depending on whether the agent is the buyer or the seller. These values are equiprobable
since every transaction involves a buyer and a seller. Therefore, E(Π̃) = 0, and

Var(Π̃) = E(Π̃2) = 1
2E(Π2) + 1

2E[(−Π)2] = E(Π2). (13)

Since the expected payoff is zero for any network, welfare is higher for a particular network
if and only if Var(Π̃) is lower.

We have the following result comparing welfare in the star and the complete network:

Proposition 3.8 (Star vs complete network: Welfare) Consider the static limiting econ-
omy as t → ∞. Suppose α ≥ 1/2 and NH + NU ≥ 3NL. Then welfare in the star is higher
than in the complete network.

The star network restricts trade with pessimists who have extreme beliefs, and this effect
is stronger when there are fewer pessimists, and hence a lower probability of a pessimist
being at the center of the star. Under the conditions in the proposition, the result is a
lower variance of the payoff, and hence higher welfare. This is the only reason for the better
performance of the star since, in the limiting economy, average beliefs are the same in both
networks.

3.4 Discussion

A number of modeling choices we have made were dictated by our objective of building a
tractable framework. First, we restrict agents to arrive sequentially and trade at a discrete
set of dates. This means that the model cannot generate results on trading volume or the
speed of trading since one unit of the asset is traded at every date regardless of the network
structure. Second, we analyze simple symmetric networks, in which randomness is limited to
the choice of agent at the center of the star. Real-world financial networks are not symmetric
and have a much greater degree of randomness. Third, the model takes an extreme view
of agent behavior; in particular, a subset of agents do not update their beliefs. Fourth, our
welfare analysis is for a single-period economy.

The first point can be partially addressed as follows. Our informational efficiency result
for the star is in fact stronger than that stated in Proposition 3.7. As can be seen from
the proof of the proposition, we show that E( ?

pt) > E( c
pt′) for all t, t′ ≥ 1. Thus the lowest

expected price in the star (across all dates) is higher than the highest expected price in
the complete network.8 It follows that, even if there are more transactions in the complete

8In the Online Appendix, we show that the same is true for the core-periphery network.
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network over a given period of time, the final price is on average lower than in the star, and
hence informational efficiency is lower as well.

In order to address the other three issues flagged above, we need to rely on numerical
simulations, which we present in Section 4.1.

4 Extensions of the Model

In Section 4.1, we present simulations that extend the theoretical results in several directions
(albeit only for a given parameter constellation). First, we show that the higher informational
efficiency of the star, relative to the complete network, generalizes to more realistic random
networks with varying levels of connectivity. We show in particular that the complete network
is less efficient than a “medium connected” random network, which is in turn less efficient
than a “low connected” random network, which is in turn less efficient than the star network.
In this sense, the star network is an extreme version of a low connected network. Second,
we introduce learning by informed agents. We show that in the short run, the ranking of
networks by informational efficiency remains the same as in the case of no learning by the
informed, but this ranking is reversed in the long run. Finally, we calculate welfare for a
dynamic economy over a finite horizon and show that higher welfare and higher informational
efficiency go hand in hand.

In Section 4.2, we provide analytical results as well as simulations for the case where
agents receive a public signal in addition to their private information. We show that the
price converges to the true value of the asset if the public signal is correct, but to the
wrong value if the public signal is incorrect. We also show that the ranking of networks
by informational efficiency is the same as in the model with no public signal, provided the
public signal is incorrect. For a correct public signal, however, the ranking is reversed.

4.1 Simulations

For the simulations we set the two values of the asset payoff V to VH = 10 and VL = 0, and
we take VH to be the realization of V , as in the preceding analysis. We set the number of
agents to N = 15, of which there are NH = 9 optimists, NL = 1 pessimists, and NU = 5
uninformed agents. These numbers are consistent with the expected number of each type
that would arise with 15 traders and a probability q = 0.8 of a signal being correct (see
footnote 5). Finally, we set the bargaining power of the agent chosen to trade to α = 1/2;
thus the two trading parties have the same bargaining power and split the surplus equally.

We consider random networks in which there is a probability φ of any edge between nodes
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being activated, independent across edges. We use two different values of this probability:
φ = 0.33 for a “medium connected” network or “MC”, and φ = 0.2 for a “low connected
network” or “LC”).9 The complete network corresponds to φ = 1; we also refer to it as a
“fully connected” network or “FC”. We generate an MC and an LC, which remain fixed for
all the simulations. These networks are shown in Figure 1, together with FC. The numbers
represent the nodes to which traders are randomly assigned in each simulation run.
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Figure 1: Networks with three levels of connectivity

We extend the model to allow for learning by informed agents as follows. For a given
network, consider an informed agent (H or L) with n − 1 neighbors. Let V̂t be her belief
at date t, and V̌t the equally weighted average of the date t beliefs of her neighbors. Then
her belief at date t + 1 is given by V̂t+1 = κV̂t + (1 − κ)V̌t, where κ is a scalar between 0
and 1. The case of no learning by the informed, as in the baseline model, corresponds to
κ = 1. If κ = 1/n, learning by this informed agent, who has n − 1 neighbors, is just as for
the uninformed. In the simulations we set κ = 0.9.

We perform 50,000 simulation runs for each specification (four network structures, FC,
MC, LC and the star, with and without learning by the informed), and plot the average
price for each date t. The price at t is random because agents are randomly allocated to the
nodes of the network, and one of these agents is randomly chosen to trade.

Figure 2(a) shows that our result on informational efficiency for the star generalizes to
random networks. For any date t, the complete network is the least efficient, as the price is
the lowest and furthest from the true value of the asset, VH . At the other extreme, the star,
which is in some sense the least connected network, performs best. In between, we have the
random networks MC and LC with intermediate levels of connectivity. Notice that, even if
we exogenously increase the volume of trade (the number of transactions) in the complete

9The average degree of a random network G(N,φ) is φ(N−1). Hence the average degree is approximately
5 for MC and 3 for LC.
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(b) Learning by H and L agents (κ = 0.9)

Figure 2: Price comparison across networks

network, it still performs worst (the price in the complete network at t = 50 is lower than
the price at any date in the other networks).

Figure 2(b) shows that if informed agents learn from others (κ = 0.9), the ranking of
the four networks is the same in the short term as in the baseline case (κ = 1), but it is
reversed in the long term. That is, after sufficiently many trading rounds, more connected
networks do better and, in particular, the complete network does best. Further simulations
that we do not report here show that this ranking reversal happens sooner if we increase the
speed of learning by the informed (i.e. lower the value of κ). Note that, even in the complete
network, the price converges to a value that is quite far from the expected payoff of the asset
under Bayesian inference (which is also the rational expectations equilibrium price under
risk neutrality).10

Next, we compare informational efficiency averaged across time (or equivalently, across
transactions) for different networks. In Figure 3(a), we present a box plot for each network
for values of I, defined by (12), where we set the horizon T = 50. The box for a given network

10The expected payoff of the asset conditional on all the information available in the market, Ĩ, is

E(V |Ĩ) = 10 · Prob(V = 10|Ĩ) + 0 · Prob(V = 0|Ĩ) = 10
[
1 +

(
1− q
q

)η]−1

,

where η is the number of private signals with value 10 minus the number of private signals with value 0. In
the simulations, η = 16 and q = 0.8, which gives us E(V |Ĩ) = 9.999999998 ≈ VH .
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Figure 3: Comparison of average informational efficiency and welfare across networks

represents the middle 50% of data, with the line inside the box indicating the median.11

Finally, we turn to welfare analysis. In Section 3, the welfare analysis is for a single-period
economy. In Figure 3(b), we show box plots for welfare, measured as the negative of the
standard deviation of payoffs of agents aggregated across all dates until t = 50. The ranking
of networks by average informational efficiency is the same as the ranking by welfare.12

In sum, the simulations show that our results on informational efficiency are robust to
more realistic random network structures, and in the short term, also to learning by informed
agents. Furthermore, we calculate welfare for a dynamic economy and show that this measure
is increasing in network connectivity.

4.2 Public Information

The analysis so far has focused on a setting in which the distribution of information is
balanced, in the sense that some agents are confident about the information that they have,
and this confidence is the same for both correctly informed and misinformed agents. More
formally, it is straightforward to check that

Prob(V = VH |s1 = s2 = VH) = Prob(V = VL|s1 = s2 = VL) =
[
1 +

(
1− q
q

)]−1

.

11The whiskers extend up to 1.5 times the interquartile range from the top/bottom of the box to the
furthest datum within that distance. If there are any data beyond the whiskers (“outliers”), they are
represented individually as points.

12The star has a long “tail”, which corresponds to the data points that arise when there is a misinformed
agent at the center of the star (since NL = 1, there is only one such agent).
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Thus optimists and pessimists have an equally strong basis for sticking to their belief that
the asset value is high or low.

This symmetry is broken if, in addition to their private signals, agents observe a public
signal. We consider a public signal that takes the same form as the private signals, as
described by (1). We continue to assume as before that the true value of the asset is VH ,
and that on the basis of their private information alone, there are three groups consisting of
NH optimists, NL pessimists, and NU uninformed agents. Now we add the public signal to
the information set of each agent.

If the public signal is correct, i.e. its realized value is VH , optimists have three high
signals, uninformed agents have two high signals and one low signal (which by Lemma 3.1
is equivalent to one high signal), and pessimists have two low signals and one high signal
(which is equivalent to one low signal). Hence it is no longer sensible to think of both
optimists and pessimists as “fanatics” in the sense of Pederson (2022). Instead, we assume
that only optimists stick to their belief that the asset value is VH , while both pessimists and
uninformed agents update their beliefs as described before (we continue to refer to agents as
uninformed if their private information consists of two conflicting signals, even though after
accounting for public information this moniker is not accurate).

If the public signal is incorrect, optimists have in effect only one high signal, the unin-
formed have one low signal, and pessimists have three low signals. In this case we assume that
pessimists maintain their belief that the asset payoff is VL, while the other agents update.

Proposition 4.1 (General network, public signal: Beliefs and prices) Consider a net-
work in which every agent is connected directly or indirectly, through the network, to at least
one optimist and one pessimist. Then we have the following results:

i. If the public signal is correct, beliefs and prices converge to VH as t→∞.

ii. If the public signal is incorrect, beliefs and prices converge to VL as t→∞.

This result follows from Proposition 1 in Pederson (2022). All beliefs converge to the un-
changing beliefs of the optimists in the first case, and to those of the pessimists in the second
case. Hence the limiting price is VH or VL for any network, implying that all networks are
asymptotically equivalent with regard to informational efficiency.

Over a finite horizon, however, connectivity does matter. We assume that in the case
of correct public information, the initial belief of a pessimist (who effectively observes one
low signal) is VL and that of an uninformed agent (who effectively observes one high signal)
is VH . These agents update their beliefs over time while optimists (who observe three high
signals) stick to VH throughout. For the case of an incorrect public signal, these roles are
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reversed: the initial belief of an optimist is VH , and that of an uninformed agent is VL, while
pessimists stick to VL for all t. Let ?

pXt be the time t price in the star with an agent of type
X at the center, where X can be H, L or U .

Proposition 4.2 (Star vs complete network, public signal: Informational efficiency)
Suppose NH > NL +NU . We have the following results:

i. Suppose the public signal is correct. Then (a) E( ?
pHt ) > E( ?

pUt ) > E( ?
pLt ) for all t ≥ 1;

and (b) E( c
pt) > E( ?

pHt ) if t is large enough.

ii. Suppose the public signal is incorrect. Then, for all t ≥ 1, (a) E( ?
pHt ) > E( c

pt) if
α ≥ 1/3; and (b) E( c

pt) > E( ?
pLt ).

Recall that in the baseline case with no public signal, the star is more informationally
efficient than the complete network. Part (i) of Proposition 4.2 shows that if there is a public
signal, and it is correct, the ranking is reversed for large t (the simulations discussed below
suggest that t does not have to be that large). While the expected price converges to the
true value VH for both networks, this convergence is faster in the complete network. In fact,
this is true regardless of the type of agent at the center of the star.

When the public signal is incorrect, there is a preponderance of information pointing to
the incorrect value VL. Both networks converge to VL in this case, and one would expect that
convergence is again faster in the complete network. Part (ii) of Proposition 4.2 shows that
this is indeed the case in comparison to the H-star, but not relative to the L-star. Whether
the star is on average more informationally efficient than the complete network remains an
open question, though the simulations below suggest that it is.

Figure 4 shows simulation results for the four network structures considered in Section
4.1. These are the same as in Figure 2(a), but this time with public information. As shown
in Proposition 4.1, prices converge to VH if the public signal is correct and to VL if it is
incorrect. If the public signal is incorrect, the ranking of the four networks by informational
efficiency is the same as in the model with no public signal. However, if the public signal is
correct, the ranking is reversed. Note that convergence is much faster in the latter case for
all four networks.

5 Experimental Evidence

We present the experimental evidence as follows. We first describe the experimental design
and, at the end of that section, we explain how the assumptions of the model map into the
experimental setting. Next, we discuss the type of analysis we do, the variables we use, and
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Figure 4: Price comparison across networks when there is a public signal

their descriptive statistics. We then present, in turn, results on trading volume and network
performance in terms of average informational efficiency and welfare, and explain how they
compare with the theoretical results. Finally, we provide additional results on the dynamics
of informational efficiency as well as on trading behavior and profits.

5.1 The Experimental Design

We run a series of independent experimental “markets” with 15 traders. At the beginning
of each market, each trader is endowed with 10 units of a one-market lived asset and 1000
units of experimental currency (ECU).13 Each unit of the asset pays a dividend V at the
end of the market, where V is equal to 0 or 10 ECU with equal probability. The dividend
payout is randomly determined at the beginning of the market, but it is not revealed to the
traders until the end of the market.

5.1.1 Connectivity and trading

Trading is in a network. We use the networks shown in Figure 1 (FC, MC, and LC), giving
rise to three different treatments. The network structure in each treatment is fixed but
traders are randomly assigned to the nodes of the network at the beginning of each market.

13The high level of initial cash ensures that traders are not cash-constrained. Trader profits will be defined
in terms of gains/losses relative to this initial level of cash.
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The trading protocol for each market is a 3 minute continuous double auction in which,
at any point in time, traders can submit bids and asks to buy or sell one unit of the asset,
or accept the outstanding offers of traders with whom they are directly connected in the
network. In other words, each subject can only observe and accept quotes in her “local”
limit order book and, similarly, her offers can only be observed and accepted by subjects
with whom she is directly connected. Every bid, ask or transaction concerns only one unit
of the asset, but a trader can buy or sell as much as desired as long as she has enough
cash or units of the asset (short sales or borrowing are not allowed). Bids and asks are not
restricted to be integers. Orders cannot be canceled. Agents know how many traders they
are connected to (and the overall level of connectivity of the network), but not their identity,
nor the identity of any trader submitting a particular bid or ask.14

Figure 5 shows an example of a hypothetical “global” limit order book and the resulting
local limit order book for agent 7 in the medium connectivity network (Figure 1(b)), who
is connected to agents 3, 4, 8, 9, 13 and 14 but not to any other agent. Negative levels of
depth represent bids (willingness to buy) whereas positive levels represent asks (willingness
to sell). If agent 7 accepts the buy order submitted by agent 3 at the posted price of 3.6,

8

9

13

6

9 13

3 3 6

7 14 7

10

9

8

9

3

4

5

-5
0

5
10

D
ep

th

1 2 3 4 5 7 8 9
Price

10

(a) Global limit order book

-5
0

5
10

D
ep

th

1 2 3 4 5 7 8 9 10
Price

(b) Local limit order book for subject 7

Figure 5: Limit order book

all the agents linked to agent 3 (i.e. 4, 5, 6, 10 and 11) will see the order disappearing from
their limit order book. Hence, as soon as the order is removed, they can infer that it has
been executed.15

14We used z-Tree software to conduct the experiments (Fischbacher (2007)). In the Online Appendix, we
include part of the presentation that we did for explaining the trading software to subjects.

15Note that orders may in principle “cross” in the local order book of an individual agent, i.e. there may
be a bid higher than an ask. Moreover, there may be, in non-fully connected networks, orders that cross in
the global order book, and in the local order books of some agents.
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5.1.2 Information and payoffs

Subjects receive noisy signals about the realized dividend at the beginning of the market.
Signals are presented to subjects as taking values of 0 or 10. A signal of 0 (10) means that
the realized dividend is 0 (10) with probability 0.8 and 10 (0) with probability 0.2. In
all markets, each subject receives two private signals. All private signals in a given market
(a total of 30 signals) are mutually independent conditional on the realized dividend. In
some markets, subjects also receive a public signal, which has the same distribution as the
private signals and is conditionally independent of them. This gives rise to three different
informational environments: “No Public Information”, “Correct Public Information” and
“Incorrect Public Information”. We compare performance across the three treatments (FC,
MC and LC) in each informational environment.

Subjects’ net profits in each market consist of the dividend paid out and the gains or
losses generated by their trading activity. The net profit of subject i in market m is

Π̃i
m := SimVm + (Ci

m − Ci
0), (14)

where Vm is the realized dividend in market m, Sim is the number of units of the asset held
by subject i at the end of the market and Ci

0 and Ci
m are, respectively, her initial and final

cash. Her final cash is determined by her initial cash, plus the price received for the units
sold, minus the price paid for the units bought. A subject’s final payoff for the session is
computed as her accumulated profit in the markets run in that session, and paid in cash at
the end of the session.16

5.1.3 Summary information

We have three treatments: full, medium and low connectivity (FC, MC and LC). We run
three sessions for each treatment. For any given treatment, subjects do not receive public
information in one of the sessions, while they do in the other two sessions. This gives us
three informational environments for each treatment (no public information, correct public
information, and incorrect public information). We run more sessions with public informa-
tion so that we have enough observations for the case in which the public signal is incorrect
(the probability of which is 0.2). In each session there are 15 subjects (each subject can

16One experimental currency unit is equivalent to 2 euro cents. The average payoff was about e20 and each
session lasted around 90 minutes. Note that it is possible for a subject to make losses in a given market. To
avoid the problems associated with subjects making session-level losses, we paid all subjects a participation
fee of e3, which could be used to offset losses. No subject earned a negative final payoff in any session.
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only participate in one session), and consists of a number of independent markets.17 In each
market, the subjects’ positions in the network as well as the signals are refreshed so that the
position and information of each subject is random across markets.

Table 1: Summary information across treatments

Number of Number of Number of Fraction of Avg Number
Number of Number of Markets with Markets with Markets with Number of Markets with of Net Correct

Treatments Sessions Markets No Public Correct Public Incorrect Public Traders High Private
Info Info Info per Session Dividend Signals

FC 3 40 10 24 6 15 0.525 18.65
MC 3 44 14 22 8 15 0.409 18.81
LC 3 45 15 23 7 15 0.466 18.71

Table 1 displays the different treatments implemented, the corresponding number of
sessions and markets, the number of markets for each informational environment, the number
of traders in each session, the proportion of markets with the high dividend, and the market-
average “number of net correct private signals” (defined as the number of correct minus the
number of incorrect private signals received by the agents in the market).

5.1.4 Relationship to the model

The asset payoff and the informational environment in the experiments is exactly as in the
model, as described in Section 3.1.1, with the two possible asset values set to VH = 10 and
VL = 0, and with the probability of a signal being correct set to q = 0.8. The number of
traders is N = 15. These are also the numerical values in the simulations of the model
in Section 4.1. The networks FC, MC and LC (shown in Figure 1) are the same in the
simulations and the experiments. We do not consider the star in the experiments as this is
more a modeling convenience than a realistic financial network.

The experimental setting differs from that in the model or simulations in, essentially, one
respect. The trading protocol in the experiments is a continuous double auction in which
traders can post bid and ask prices at any time and can also execute trades whenever they
wish. This difference is due to our objective of keeping the experimental setting close to
real-world markets, but having to make compromises in the model to achieve tractability.18

17Our aim was to have 15 markets per session. However, due to a technical issue, we had to drop the data
for the last few markets in two sessions, and thus ended up with 10 and 14 markets, respectively, in these
sessions.

18In addition, agents cannot engage in borrowing or short sales in the experiments.
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5.2 Analysis, Variables and Descriptive Statistics

We perform analysis at market, transaction, and subject levels. We show box plots and
regression analysis results.19 In the regressions, we first pool all the observations and then
we separate them by informational environment. Standard errors are corrected for session-
level clustering and reported in parentheses (***p<0.01, **p<0.05, *p<0.1, † p<0.15).

We now briefly discuss the dependent and explanatory variables of our analysis. Summary
descriptive statistics for these variables are displayed in Table 2.

Table 2: Descriptive statistics

All Observations No Public Info Correct Public Info Incorrect Public Info
Obs. Mean Median Min Max Mean Mean Mean

D
ep

en
de
nt

V
ar
. Trading Volume 129 54.4 50 23 123 58.7 50.4 59.4

Avg Info Efficiency 129 -2.19 -1.81 -0.07 -8.14 -2.95 -1.07 -4.46
Welfare 129 -20.03 -15.12 -0.53 -96.90 -28.92 -9.78 -37.17

Informational Efficiency 7,017 -2.35 -1.50 0 -10 -3.07 -1.12 -4.47

Profit 1,935 46.51 28.3 -299.8 358.1 35.8 47.8 61.9
Stock Bought 1,935 3.62 1 0 83 3.92 3.35 3.96
Stock Sold 1,935 3.62 2 0 17 3.92 3.35 3.96
Stock Held 1,935 10 9 0 93 10 10 10

In
de
pe

nd
en
t
V
ar
. Medium Connectivity 129 0.341 0 0 1 0.358 0.318 0.380

Low Connectivity 129 0.348 0 0 1 0.384 0.333 0.333
Correct Public Information 129 0.534 1 0 1 - - -
Incorrect Public Information 129 0.162 0 0 1 - - -
Net Private Information 129 18.72 20 10 28 18.35 18.89 18.85

Correctly Informed Agent 1,935 0.669 1 0 1 0.663 0.670 0.676
Misinformed Agent 1,935 0.044 0 0 1 0.051 0.040 0.047
Connected Agent 1,935 0.461 0 0 1 0.500 0.437 0.466

5.2.1 Market and transaction level

We consider trading volume, average informational efficiency, and welfare as dependent vari-
ables at the market level. We also analyze informational efficiency at the transaction level.

Trading volume τm in market m is the total number of times the asset is traded by any
pair of agents in that market (each transaction involves one unit of the asset). As shown in
Table 2, trading volume is lowest when there is a public signal and it is correct.

The average informational efficiency (averaged across transactions) in market m is

Im := 1
τm

τm∑
j=1
Ij,m, (15)

19We explain how to interpret a box plot in the discussion of Figure 3 and in footnote 11.
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where Ij,m is the informational efficiency for the j’th transaction in market m, defined as

Ij,m := −|pj,m − Vm|, (16)

where pj,m is the price of the ordered transaction j in market m, and Vm is the realized
dividend in market m. Ij,m is the analog of the variable It in the model, defined by (11)
(note that in the model each date corresponds to a transaction). Similarly, Im is the analog
of the variable I in the model, defined by (12). As in the theoretical framework, with
these measures, the highest level of efficiency is zero and, the less efficient the market or
transaction is, the more negative the corresponding measure is. As we can see in Table 2,
average informational efficiency is highest when there is a public signal and it is correct, and
the lowest when there is a public signal but it is incorrect.

Assuming mean-variance preferences, (ex ante) welfare in market m, Wm, is measured by
the negative of the standard deviation of the profits of the 15 participants in market m, i.e.

Wm = −
√√√√ 1

14

15∑
i=1

(
Π̃i
m −

1
15

15∑
j=1

Π̃j
m

)2
,

where Π̃i
m is the profit of agent i in market m, as defined by (14). This is the empirical

equivalent of the welfare measure in the model, except that in the model we consider only
payoffs in the limiting economy, while here payoffs are aggregated over the duration of the
market. We can see from Table 2 that the ranking of the three informational environments
is the same for welfare as for average informational efficiency.

The independent variables at the market and transaction levels include dummies for con-
nectivity: medium and low connectivity, as opposed to full connectivity, our base category.
We also include dummies for a correct public signal and an incorrect one, using no public
information as the default category. For private information we use the number of net correct
private signals. By Lemma 3.1, this measures the strength of the pooled private information
in the market that points to the correct value of the dividend.

5.2.2 Subject level

We define the following dependent variables at the individual subject level: profits, stock
bought, stock sold and stock held. Stock bought and sold count the number of units of the
asset bought and sold, respectively, by the agent during the operation of the market. Stock
held is the number of units of the asset held by the agent at the end of the market. The
average number of units of the asset bought (which must be equal to the average number sold)
varies in the same direction as trading volume across the three informational environments,
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as shown in Table 2. Average stock held is by definition equal to the initial endowment.
The number of observations is equal to the number of markets (129) times the number of
subjects in each market (15), which yields a total of 1935.

As independent variables at the subject level, we use, in addition to the market-level
variables mentioned above, a dummy variable for correctly informed agent, which takes a
value of 1 if the subject has received two correct private signals, a dummy variable for
misinformed agent, which takes a value of 1 if the subject has received two incorrect private
signals, and a dummy variable for “connected agent”, which takes a value of 1 if the number
of links of the subject (her degree) is above the median in that market. As the probability of
receiving a correct signal is 0.8, the fraction of correctly informed traders is (approximately)
0.64.

5.3 Trading Volume

This section shows that agents in centralized markets trade more than in decentralized mar-
kets. In the next section we will see that, despite this, decentralized markets perform better
in terms of average informational efficiency and welfare. The higher number of transac-
tions in centralized markets is not sufficient for prices to better reflect private information,
although all traders observe all transactions in such markets.

Figure 6 shows that trading volume decreases with lower connectivity, especially when
moving from full connectivity to medium connectivity, in each of the three informational
environments.20 These results are confirmed by the regressions shown in Table 3. The
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Figure 6: Trading volume
20A Mann-Whitney test (two sample t-test) rejects the null hypothesis of equal median (equal mean) at

the 1% significance level for each pair of treatments (FC, MC and LC) in each of the three informational
environments (no public information, correct public information and incorrect public information).
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Table 3: Trading volume regressions

All No Public Info Correct Public Info Incorrect Public Info

Medium Connectivity −30.419∗∗∗ −48.232∗∗∗ −24.506∗∗∗ −22.666∗∗
(6.053) (0.236) (5.334) (7.584)

Low Connectivity −40.309∗∗∗ −58.389∗∗∗ −31.268∗∗∗ −37.625∗∗∗
(5.425) (0.174) (3.490) (4.909)

Correct Public Info −11.412∗
(5.290)

Incorrect Public Info −0.520
(5.309)

Net Private Info −0.491 −1.611∗ 0.032 −0.405
(0.282) (0.434) (0.371) (0.947)

Constant 94.234∗∗∗ 128.146∗∗∗ 68.033∗∗∗ 88.241∗∗∗
(9.981) (7.993) (8.794) (14.148)

Observations 129 39 69 21
R-squared 0.60 0.79 0.49 0.70

coefficients of the dummies for medium and low connectivity are negative and strongly
significant in all the regressions, both in the pooled sample in column 1 as well as for each
informational environment in columns 2-4. The coefficient for low connectivity is more
negative than the one for medium connectivity. Thus, in decentralized markets, trading
volume is lower than in centralized markets, and as the connectivity of decentralized markets
decreases trading volume decreases further. These results are in line with “common wisdom”.

We do not observe systematic differences in trading volume across informational envi-
ronments. Column 1 shows that trading volume is lower when the public signal is correct,
compared to the case of no public signal. But if the public signal is incorrect, trading volume
is not significantly different from the no public signal case.21 The number of net correct pri-
vate signals has a negative impact on trading volume when there is no public signal (column
2), but has no significant effect when there is a public signal (columns 3 and 4).

5.4 Network Performance

In this section we present the effects of connectivity (full, medium, or low) on performance,
taking into account the informational environment (no public signal, correct public signal,
or incorrect public signal). We show that decentralization can outperform centralization in
terms of average informational efficiency and welfare, consistent with the results of the model
(Sections 3 and 4), despite involving less trade (Section 5.3).

21While our model does not have predictions on trading volume, we can use belief dispersion, or disagree-
ment, as a proxy, to explain these results. When there is no public signal, beliefs vary from VL to VH .
When there is a public signal, all beliefs converge to either VL or VH (Proposition 4.1). Figure 4 suggests
that this convergence is faster when the public signal is correct than when it is not. Thus in the model,
disagreement is the lowest in the case of a correct public signal and highest when there is no public signal,
which is consistent with the above results on trading volume.
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5.4.1 Average informational efficiency

We first consider average informational efficiency, as measured by Im (see (15)), i.e. infor-
mational efficiency averaged across all transactions in market m. Figure 7(a) shows that the
fully connected network is generally not more efficient than less-connected networks. In the
pooled regression in Table 4, the dummies for connectivity are not significant. Thus con-
nectivity appears to have no impact, positive or negative, on informational efficiency. But a
more nuanced picture emerges when we split the sample by informational environment.
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Figure 7: Average informational efficiency and welfare

Table 4: Average informational efficiency regressions

All No Public Info Correct Public Info Incorrect Public Info

Medium Connectivity 0.175 0.369*** 0.101 -0.465
(0.189) (0.016) (0.218) (0.816)

Low Connectivity -0.106 0.034* -0.355** -0.455
(0.147) (0.012) (0.065) (0.815)

Correct Public Info 1.804***
(0.112)

Incorrect Public Info -1.590***
(0.239)

Net Private Info 0.131*** 0.199** 0.058† 0.225**
(0.027) (0.029) (0.028) (0.057)

Constant -5.387*** -6.751*** -2.089** -8.375***
(0.522) (0.536) (0.536) (1.038)

Observations 129 39 69 21
R-squared 0.66 0.38 0.16 0.31

In the case of no public information, average informational efficiency in decentralized
markets is higher than in centralized markets, as shown by the positive and significant
coefficients on the dummies for medium and low connectivity (column 2). This is in line
with our theoretical results on the higher informational efficiency of incomplete networks,
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in particular Proposition 3.7, and the simulations which show that the medium and low
connected random networks outperform the fully connected network (Figures 2 and 3(a)).

When there is a public signal and it is correct, average informational efficiency is higher
in centralized markets (FC) than in highly decentralized markets (LC), in line with part
(i) of Proposition 4.2 and Figure 4(a). However, in the case of an incorrect public signal,
connectivity has no significant effect on average informational efficiency. Generally speaking,
the effect of connectivity on average informational efficiency is less significant when there is
a public signal. This is consistent with Proposition 4.1, which shows that prices converge to
the same value for all networks if there is a public signal.

Results across informational environments are intuitive. Average informational efficiency
is highest when the public signal is correct, and lowest when the public signal is incorrect.
This can be seen in Figure 7(a), as well as in the pooled regression (column 1), where the
coefficient on the dummy variable for correct public information is positive and significant,
whereas that on the dummy for incorrect public information is negative and significant.
These results are also consistent with Proposition 4.1, which says that the price converges
to the correct value of the asset when the public signal is correct, but to the wrong value
when the signal is incorrect (see also Figure 4). The intermediate performance of the no
public signal case is in line with Propositions 3.4 and 3.6, which show that the expected
price converges to a value between the high and low value of the dividend (see also Figure
2).

The regressions also show, both overall and in the split samples, that average informa-
tional efficiency is higher if there is more private information pointing to the true dividend.
The coefficient on the net number of correct private signals is always positive and almost
always significant. Comparing the magnitudes, private information is more important when
there is no public signal, and especially when there is but it is incorrect.

5.4.2 Welfare

Figure 7(b) shows that welfare is generally higher in decentralized, less connected markets.
This is especially the case when public information is not available or when it is incorrect,
although in the latter case there is a lot more variance across markets.22 When the public
signal is correct, welfare is high and fairly similar across all levels of connectivity. This is
because agents are more homogeneously informed about the true value of the asset after the
release of a correct public signal, leading to a lower variance of payoffs (Figure 4(a) shows that
convergence can be quite fast). Figure 7(b) also indicates that the ranking of informational

22A Mann-Whitney test (two sample t-test) rejects the null hypothesis of equal median (equal mean) at
the 1% significance level between FC and LC when there is no public information.
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environments with respect to welfare is the same as for informational efficiency, i.e. highest
in the case of a correct public signal and lowest in the case of an incorrect public signal.

Table 5: Welfare regressions

All No Public Info Correct Public Info Incorrect Public Info

Medium Connectivity 11.035** 23.037*** 5.056* 8.044
(3.936) (0.307) (2.407) (15.626)

Low Connectivity 13.314** 25.078*** 2.444* 19.763
(4.043) (0.226) (0.978) (15.532)

Correct Public Info 19.300***
(3.442)

Incorrect Public Info -8.702
(5.489)

Net Private Info 1.783*** 3.181** 0.535* 2.469
(0.421) (0.565) (0.225) (1.262)

Constant -70.742*** -105.233*** -22.319*** -93.388**
(10.781) (10.394) (4.174) (24.940)

Observations 129 39 69 21
R-squared 0.549 0.705 0.079 0.459

These observations are confirmed in the regressions shown in Table 5, where the dummies
for medium and low connectivity have a positive effect which is significant, except in the
case of an incorrect public signal. In the pooled regression (column 1), the dummy for
correct public information has a positive, significant effect on the level of welfare whereas
the dummy for incorrect public information has a negative, though not significant, effect.
The regressions also show that welfare is higher if there is private information pointing to
the true dividend. This effect is more pronounced in the case of no public information.

These findings are consistent with welfare results in the model, in particular Proposition
3.8 which shows that welfare is higher in the star compared to the complete network, and
the simulations that show that welfare goes up as connectivity falls (Figure 3(b)).

5.5 Dynamics of Informational Efficiency

Now we provide a more granular analysis of informational efficiency. Figure 8 plots Ij,m,
which measures informational efficiency for the j’th ordered transaction in market m (see
(16)), as a function of j, averaged across all markets with the same level of connectivity and
informational environment. The figure suggests that prices gets closer over time to the true
dividend in all cases, except in the fully or medium connected market with an incorrect public
signal. Full convergence is not achieved for any network or informational environment.23

We observe that, after a given number of transactions, informational efficiency is generally
higher in more decentralized markets, except in the case of a correct public signal. Still, in the

23Market prices are quite far from the rational expectations equilibrium price under risk neutrality, which
is very close to the true dividend (see footnote 10).
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Figure 8: Informational efficiency as a function of the number of transactions

case of no public information, centralized markets reach comparable levels of informational
efficiency towards the end of the market because it involves a higher number of transactions
(Section 5.3). Section 5.4.1 shows, though, that on average, across all the transactions in
the market, the level of informational efficiency is lower in centralized markets.

Table 6: Informational efficiency regressions for the first 40 transactions

All No Public Info Correct Public Info Incorrect Public Info

Medium Connectivity 0.456 0.983∗∗∗ 0.474 −0.969
(0.251) (0.030) (0.309) (0.511)

Low Connectivity 0.135 0.843∗∗∗ −0.242 −0.811∗
(0.245) (0.022) (0.174) (0.382)

Correct Public Info 2.016∗∗∗
(0.172)

Incorrect Public Info −1.402∗∗∗
(0.218)

Net Private Info 0.124∗∗∗ 0.184∗ 0.057 0.221∗∗∗
(0.025) (0.055) (0.035) (0.047)

Second Block 0.580∗∗∗ 0.831∗∗∗ 0.603∗∗∗ 0.118
(0.082) (0.000) (0.044) (0.220)

Medium Connectivity*Second Block −0.108 −0.170∗∗ −0.333∗∗ 0.678
(0.107) (0.023) (0.115) (0.423)

Low Connectivity*Second Block 0.238 −0.352∗∗∗ 0.291∗∗∗ 1.063∗∗
(0.177) (0.019) (0.069) (0.289)

Constant −6.046∗∗∗ −7.597∗∗ −2.622∗∗ −8.469∗∗∗
(0.466) (1.011) (0.753) (0.659)

Observations 4.844 1.466 2.558 820
R-squared 0.391 0.165 0.065 0.191

In Table 6 we report results for regressions of (transaction-level) informational efficiency
on connectivity and information variables for the first 40 transactions, separated into two
blocks of 20 transactions (the minimum number of transactions in any market is 40). The
clearest results are for the case of no public information (column 2). Decentralization im-
proves upon centralization if we consider the first 20 transactions, as the medium and low
connectivity coefficients are positive and significant. This difference is reduced but not elimi-
nated if we consider the second block of 20 transactions, as shown by the interaction terms of
the second block and the connectivity coefficients. This is consistent with Figure 2(b), where
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we see a decline in the beneficial effect of lower connectivity as the number of transactions
increases.

Except in the case of an incorrect public signal, the main coefficient of the second block
is positive and significant, showing that informational efficiency improves over time. This is
consistent with our simulation results on price dynamics (see Figures 2 and 4).

5.6 Individual Trading Behavior and Profits

In this section we describe how individual trading behavior and profits depend on information
and connectivity variables, both at the individual and network levels. We first investigate
the determinants of individual profits. Subsequently, we explore the sources of agent profit
differentials by looking into trading behavior, both in terms of direction and speed of trade.
As individual behavior and performance are highly dependent on the level of the dividend,
we separate the observations by the realization of the dividend in the market.

5.6.1 Profits: information vs connectivity

Table 7 shows how profits depend on information and connectivity variables. As shown by
model 1, agents’ private information is the most significant and quantitatively important
variable, with correctly informed agents outperforming uninformed agents, who in turn out-
perform misinformed agents. The individual connectivity of an agent, in contrast, does not
affect profits significantly. In other words, profits flow from the misinformed to the correctly
informed, and this does not depend on how many neighbors these agents have.

Model 2, which includes interaction variables of private information with network and
individual connectivity, shows that the gains from correct information, as well as the losses
due to incorrect information, are higher in centralized markets. Indeed, the interaction
variables of private information and medium and low connectivity generally display opposing
signs to the main effects. This is consistent with our previous finding that the cross-sectional
variance of profits increases with market connectivity, leading to lower welfare ex ante.

5.6.2 Individual behavior: direction of trade and connectivity

We now investigate the sources of agent profit differentials by looking into individual trading
behavior. We first regress the number of units of the asset bought, sold and held on infor-
mation and connectivity variables. Table 8 shows that in centralized markets agents tend to
trade in the direction that their private information indicates, with correctly informed agents
buying when the dividend is high and selling when the dividend is low, while misinformed
agents trade in the opposite direction. This is significantly less pronounced in decentralized
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Table 7: Profit regressions

Model 1 Model 2
Dividend 0 Dividend 10 Dividend 0 Dividend 10

Correctly Informed Agent 14.323*** 15.243*** 24.952** 14.361*
(3.608) (3.447) (7.995) (6.623)

Correctly Informed Agent*Medium Connectivity -17.104* 3.053
(8.015) (8.035)

Correctly Informed Agent*Low Connectivity -19.306* -2.203
(8.975) (8.179)

Misinformed Agent -44.294*** -16.559** -44.562*** -24.770*
(9.059) (5.434) (4.873) (11.836)

Misinformed Agent*Medium Connectivity -4.502 10.064
(12.843) (12.548)

Misinformed Agent*Low Connectivity 30.177** 12.892
(12.242) (14.167)

Connected Agent 0.713 -0.205 -2.006 -1.406
(1.181) (1.405) (2.005) (3.139)

Correctly Informed Agent*Connected Agent 4.640* 1.777
(2.046) (2.754)

Misinformed Agent*Connected Agent -21.101 0.510
(12.102) (8.330)

Medium Connectivity 0.171 0.101 12.012* -2.354
(0.583) (0.650) (5.249) (4.993)

Low Connectivity 0.193 0.191 12.131* 1.106
(1.207) (1.195) (6.171) (5.446)

Correct Public Info -0.201 -0.004 -0.426 -0.090
(0.386) (0.025) (0.388) (0.117)

Incorrect Public Info -0.074 0.010 0.571 0.104
(0.493) (0.059) (0.607) (0.271)

Net Private Info -0.779*** -0.518*** -0.762*** -0.528***
(0.126) (0.108) (0.132) (0.108)

Constant 6.709** 100.235*** -0.533 101.350***
(2.294) (0.978) (4.969) (2.901)

Observations 1,035 900 1,035 900
R-squared 0.203 0.114 0.225 0.117

markets. The interaction variables between correct information and medium/low connectiv-
ity always have the opposite sign to those of the standalone variable of correct information,
and the coefficients are highly significant. In fact the interacted effects almost reverse the
main effect, and thus correctly informed agents in decentralized markets trade in a similar
way to other agents. The coefficients for misinformed agents are not significant, possibly
because they are very few in number. Overall, these findings are consistent with the results
of the previous section, where we saw that decentralization lowers the payoff differential
between agents who have correct information and those who do not.

5.6.3 Individual behavior: speed of trading and connectivity

Figure 9 compares the speed of trading by correctly informed agents to that of other agents,
most of whom are uninformed. Focusing on the case of no public information, we compute
the average distribution of buy and sell volume of the individual traders over time. Each
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Table 8: Regressions for stock bought, sold and held

Stock Bought Stock Sold Stock Held
Dividend 0 Dividend 10 Dividend 0 Dividend 10 Dividend 0 Dividend 10

Correctly Informed Agent -5.733*** 3.985*** 2.353*** -2.579*** -8.086*** 6.563***
(1.374) (0.559) (0.510) (0.110) (1.831) (0.586)

Correctly Informed Agent*Medium Connectivity 6.028*** -3.365*** -2.544*** 2.131*** 8.572*** -5.496***
(1.376) (0.740) (0.666) (0.546) (1.923) (0.804)

Correctly Informed Agent*Low Connectivity 5.119*** -2.333** -2.080** 2.957** 7.199*** -5.290***
(1.458) (0.727) (0.831) (1.102) (2.112) (1.111)

Misinformed Agent 9.182* -1.026 0.404 1.703** 8.778** -2.729
(4.776) (1.077) (1.456) (0.734) (3.389) (1.799)

Misinformed Agent*Medium Connectivity -3.919 -1.972 -2.723 2.226 -1.196 -4.198
(5.183) (1.563) (1.666) (2.862) (3.913) (2.530)

Misinformed Agent*Low Connectivity -7.986 -1.590 -1.354 3.108 -6.632 -4.697
(5.733) (1.531) (1.667) (3.613) (4.746) (3.798)

Connected Agent 0.431 -0.397 -0.373 -0.306 0.804 -0.091
(0.361) (0.745) (0.686) (0.523) (1.012) (0.468)

Correctly Informed Agent*Connected Agent 0.248 -0.482 -0.112 0.204 0.360 -0.685
(0.494) (0.567) (0.753) (0.962) (1.164) (1.017)

Misinformed Agent*Connected Agent -1.703 3.028** 2.364** -5.318 -4.066 8.347**
(3.166) (1.117) (1.008) (3.617) (3.411) (3.305)

Medium Connectivity -6.696*** 1.011 -0.584 -2.806*** -6.112*** 3.816***
(1.185) (0.760) (0.346) (0.450) (1.248) (0.534)

Low Connectivity -6.689*** -0.285 -1.458* -4.109*** -5.231*** 3.824***
(1.184) (0.626) (0.639) (0.576) (1.419) (0.644)

Correct Public Info -0.143 -1.406*** -0.361 -1.402*** 0.218** -0.004
(0.299) (0.339) (0.293) (0.336) (0.069) (0.051)

Incorrect Public Info -0.153 -0.317 0.064 -0.453 -0.216 0.136
(0.800) (0.287) (0.537) (0.309) (0.285) (0.159)

Net Private Info 0.009 -0.057 -0.066 0.013 0.075 -0.070*
(0.045) (0.031) (0.036) (0.021) (0.044) (0.036)

Constant 8.959*** 4.365*** 5.429*** 7.288*** 13.530*** 7.077***
(1.159) (0.729) (0.780) (0.548) (0.947) (0.707)

Observations 1,035 900 1,035 900 1,035 900
R-squared 0.096 0.086 0.144 0.118 0.076 0.066

figure corresponds to a given network (FC, MC or LC), a given value of the dividend (D = 0
or 10), and either buy or sell volume. For example, the figure in the top row and second
column shows the proportion of buy volume over time in the fully connected network with a
dividend of 10. We take a market with these characteristics and a correctly informed trader
in that market. We calculate the buy volume of this trader up to t relative to her total buy
volume in the market. We then average these values across all correctly informed traders in
markets with the same characteristics (fully connected with a high dividend), and plot this
point in the figure. The value at date t on the graph for “other traders” in the same figure
is analogous.
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Figure 9 shows that in centralized markets (row 1), correctly informed traders buy more
slowly than other buyers when the dividend is 0, and faster when the dividend is 10. Also,
they sell faster than other sellers when the dividend is 0, and more slowly when the dividend
is 10. These effects are much less apparent in decentralized markets (rows 2 and 3). All these
results are confirmed by Kolmogorov-Smirnov tests checking for equality of distributions (see
Table 9). The distributions of correctly informed agents (buyers and sellers) are significantly
different from those of other agents in fully connected markets, but the difference is not
significant in medium and low connected markets.

Table 9: KS test statistics for equal distributions

Buyer Seller
Dividend 0 Dividend 10 Dividend 0 Dividend 10

Full Connectivity 0.1436∗∗ 0.2210∗∗∗ 0.2597∗∗∗ 0.2980∗∗∗
Medium Connectivity 0.1105 0.1271 0.0940 0.0660
Low Connectivity 0.0939 0.1105 0.0939 0.0718

Test statistics for two-sample Kolmogorov-Smirnov test checking the equality of the distribution of transactions of correctly

informed traders and other traders.

To summarize, while agents who have the same information sometimes trade in opposite
directions, agents do tend to trade in the direction that their private information suggests.
This is especially the case in fully connected markets. Quite naturally, correctly informed
agents reap higher profits in centralized markets because they trade more in the direction
which turns out to be the right one ex post, while misinformed agents lose more as they trade
more in the opposite direction. In addition, in fully connected markets, correctly informed
trade faster (in the right direction), and thus benefit from prices that are further away from
fundamentals. Decentralization reduces payoff differentials across agents and thus increases
welfare ex ante, consistent with the results we obtained in the previous section.

6 Conclusion

In light of recent proposals to change the organization of asset markets, an assessment of
the performance of decentralized markets deserves more attention. In this paper we seek
to isolate and understand the role of connectivity. We find that fewer connections do not
necessarily imply poorer performance. Despite lower trading volume, decentralized markets
can be more informationally efficient, and make mean-variance investors better off, when
compared to centralized markets.

We provide a simple model of networked trading with noisy private information. The
model, in the tradition of DeGroot (1974), Pederson (2022), and others, features heuristic
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updating, or rule-of-thumb learning. We assume that informed agents (whose private infor-
mation may or may not be correct ex post) do not update their beliefs, while uninformed
agents use a heuristic updating rule, whereby they repeatedly average their own beliefs with
those of their neighbors in the network. Beliefs evolve independently of trades and prices,
just as in Pederson (2022). However, unlike Pederson (2022), where trading is Walrasian,
we assume that agents arrive sequentially and one unit is traded at each date, similar to
the trading environment in Glosten and Milgrom (1985). Our proposed model assumes,
intuitively, we believe, that when it is an agent’s turn to trade, she chooses to trade with
a neighbor whose belief is furthest away from her own belief, thus maximizing gains from
trade.

We show that, under these conditions, incomplete networks, such as the star and the core-
periphery network, perform better than the complete network, in terms of both informational
efficiency and welfare. In the complete network, misinformed agents with “extreme” views
have a disproportionate impact on trading activity, as transactions with these agents result
in higher perceived gains from trade for both buyer and seller. Fewer links in the network
lead to fewer trades with misinformed agents (who are less numerous than correctly informed
agents), pushing prices closer to the fundamental, and reducing the variance of payoffs.

We perform numerical simulations that extend the theoretical results in several directions.
First, we show that the higher informational efficiency of the star, relative to the complete
network, generalizes to more realistic random networks with varying levels of connectivity.
Second, we introduce learning by informed agents. We show that in the short run, the ranking
of networks by informational efficiency remains the same as in the case of no learning by the
informed, but this ranking is reversed in the long run. Finally, we show that higher welfare
and higher informational efficiency go hand in hand.

We extend the model to allow for public information. We show that if there is a public
signal, and it is correct, the ranking of networks in the no public information case may
be reversed. While the expected price converges to the true value for any network, this
convergence is faster in the complete network. When the public signal is incorrect, there is
a preponderance of information pointing to the incorrect value. As a result, the expected
price converges to the wrong value for any network, and this convergence is again faster in
the complete network. Simulations show that incomplete networks are more informationally
efficient than the complete network in this informational environment.

The experimental evidence provides support for the theoretical results. In the case of no
public information, average informational efficiency in decentralized markets is higher than
in centralized markets. When there is a public signal and it is correct, average informational
efficiency is higher in centralized markets than in highly decentralized markets. However, in
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the case of an incorrect public signal, connectivity has no significant effect on average infor-
mational efficiency. Generally speaking, the effect of connectivity on average informational
efficiency is less significant when there is a public signal.

In addition to corroborating the results of the model on average informational efficiency
and welfare, the experiments allow us to provide a number of further insights. Although
informational efficiency, for a given number of transactions, is higher in decentralized mar-
kets, centralized markets reach comparable levels of informational efficiency towards the end
of the market due to a higher number of transactions. Still, correctly informed agents earn
higher profits in centralized markets, as compared to decentralized markets, because they
trade more and faster in the direction which turns out to be the right one ex post, while
misinformed agents lose more as they trade more in the opposite direction. Decentralization
reduces payoff differences and thus increases welfare for mean-variance investors.

The results of our experiments not only confirm the main predictions of the theoretical
model in terms of average informational efficiency and welfare, but they also provide support
for the DeGroot learning model as a useful tool in understanding price formation in asset
markets with dispersed information. Indeed, trading behavior and the dynamic informational
efficiency results in the experiments are broadly consistent with those of the theoretical
model. We show, for instance, that in the absence of public information, informational
efficiency improves over time, but prices remain far from the true dividend. This provides
support for the rule-of-thumb learning we assume in the model, which predicts that the
price converges to an intermediate value between the two possible values of the dividend, as
opposed to Bayesian learning, which predicts full revelation, very little trade, and a price very
close to the true dividend. In this sense, our results provide experimental evidence in support
of the DeGroot learning model, supplementing the evidence reported in Chandrasekhar et al.
(2020).

Despite the assumption that one unit is traded at every date regardless of the network
structure, our model is a useful vehicle for understanding the consequences of different lev-
els of trading volume across networks. Indeed, we can calculate the effect on prices and
informational efficiency of an exogenous increase in the volume of trade for a given network.
But our model (or any other model that we are aware of) does not explain why we observe
more trade in centralized markets. A model of networked markets that can address the
effects of connectivity not only on market performance, but also on trading volume, remains
a challenge for future research.
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A Appendix: Proofs

Before presenting the proofs of the propositions in the paper, we state the following useful
result which is immediate from (3):

Lemma A.1 (General network: Evolution of beliefs) For t ≥ 1,

ṼU(t+ 1)− ṼU(t) = AtUv, (17)

where v is the 1×NU vector given by

v := (AU − I)1NU

VH + VL
2 + (AH1NH

VH + AL1NL
VL). (18)

Proof of Lemma 3.1 The proof involves repeated application of Bayes’ rule. First, we
observe that

Prob(V = VH |s1 = VH , s2 = VL) = Prob(s2 = VL|V = VH , s1 = VH)Prob(V = VH |s1 = VH)
Prob(s2 = VL|s1 = VH)

= Prob(s2 = VL|V = VH)
Prob(s2 = VL|s1 = VH)q.

We have

Prob(s2 = VL|s1 = VH) = Prob(s2 = VL, V = VL|s1 = VH) + Prob(s2 = VL, V = VH |s1 = VH)

= Prob(s2 = VL|V = VL, s1 = VH)Prob(V = VL|s1 = VH)

+ Prob(s2 = VL|V = VH , s1 = VH)Prob(V = VH |s1 = VH)

= (1− q)Prob(s2 = VL|V = VL) + qProb(s2 = VL|V = VH)
]
.

Also,

Prob(s2 = VL|V = VL) = Prob(V = VL|s2 = VL)Prob(s2 = VL)
Prob(V = VL)

= 2qProb(s2 = VL),
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and

Prob(s2 = VL|V = VH) = Prob(V = VH |s2 = VL)Prob(s2 = VL)
Prob(V = VH)

= 2(1− q)Prob(s2 = VL).

Therefore,

Prob(V = VH |s1 = VH , s2 = VL) = Prob(s2 = VL|V = VH)
Prob(s2 = VL|s1 = VH)q

= Prob(s2 = VL|V = VH)
(1− q)Prob(s2 = VL|V = VL) + qProb(s2 = VL|V = VH)q

= 1
2 .

This completes the proof. �

Proof of Proposition 3.3 Recall that 1m denotes an m-vector of ones. It is easy to check
that, for an integer n ≥ 1,

AnU = 1
NU

(
NU

N

)n
1NU

1>NU
. (19)

Using this fact, we see from (3) that

c̃

VU(t) = 1
NU

(
NU

N

)t
1NU

1>NU
1NU

VH + VL
2 +

[
I + 1

NU

t−1∑
k=1

(
NU

N

)k
1NU

1>NU

]
NHVH +NLVL

N
1NU

,

for t ≥ 1. Hence
c

V i
U(t) is the same for all i. We denote the common value by

c

VU(t). It is
given by

c

VU(t) =
(
NU

N

)t VH + VL
2 +

[
1 +

t−1∑
k=1

(
NU

N

)k] NHVH +NLVL
N

=
(
NU

N

)t VH + VL
2 +

1−
(
NU

N

)t
1− NU

N

 NHVH +NLVL
N

=
(
NU

N

)t VH + VL
2 +

[
1−

(
NU

N

)t] NHVH +NLVL
NH +NL

(20)

= NHVH +NLVL
NH +NL

−
(
NU

N

)t (NH −NL)(VH − VL)
2(NH +NL)

= V̄ −
(
NU

N

)t NH −NL

NH +NL

VH − VL
2 . (21)

This establishes the result for t ≥ 1. From (20), it is easy to check that it holds for t = 0 as
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well. It is immediate from (21) that
c

VU(t) is strictly increasing in t and converges to V̄ as t
goes to infinity. �

Proof of Proposition 3.4 There are only three possible pairings, HL, LH and UL, that
arise when H, L or U is chosen to trade. Using (7) and (8), we have

E( c
pt) = NH

N
pHL + NL

N
pLH + NU

N
c
pUL(t)

= 1
N

[
(NH +NL)V̄ − α(NH −NL)(VH − VL) +NU [αVL + (1− α)

c

VU(t)]
]
.

From Proposition 3.3,
c

VU(t) is strictly increasing in t and limt→∞
c

VU(t) = V̄ . Therefore,
E( c
pt) is strictly increasing in t and the limiting value is given by

E( c
p∞) = V̄ − α

N

[
(NH −NL)(VH − VL) +NU(V̄ − VL)

]
= V̄ − α VH − VL

N(NH +NL)
[
(NH +NL)(NH −NL) +NHNU

]
= V̄ − α VH − VL

N(NH +NL)
[
N(NH −NL) +NLNU

]
.

This completes the proof. �

Proof of Proposition 3.5 Proof of (i) and (ii): Consider the H-star. Starting from
?

V H
U (0) = (VH + VL)/2, and repeatedly updating using

?

V H
U (t + 1) = [

?

V H
U (t) + VH ]/2, we

obtain

?

V H
U (t) = 1

2

[ 1
2tVL +

(
1 + 1

2 + 1
22 + . . .+ 1

2t
)
VH

]
= 1

2

[ 1
2tVL + 2

(
1− 1

2t+1

)
VH

]
,

which gives us the desired result for the H-star. The proof for the L-star is analogous.

Proof of (iii): Consider the U -star. Recall that in the adjacency matrix A, given by (2),
we order the agents so that the uninformed agents come first. Without loss of generality, we
place agent 1 at the center of the U -star. Then,

AU =



1
N

1
N

1
N

. . . 1
N

1
2

1
2 0 . . . 0

1
2 0 1

2 . . . 0
... ... ... . . . ...
1
2 0 0 . . . 1

2


=
 1

N
1
N

1>NU−1
1
21NU−1

1
2INU−1

 ,
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while the matrices AH and AL have 1/N in each entry for the first row, and 0 in all other
entries. We denote by INU−1 the (NU − 1)× (NU − 1) matrix all of whose elements are one.
We have

A2
U =

 1
N2 + NU−1

2N

(
1
N2 + 1

2N

)
1>NU−1(

1
2N + 1

4

)
1NU−1

1
2N INU−1 + 1

4INU−1

 .
Note that every element of A2

U is strictly positive, which implies that the same is true for
higher powers of AU . It follows that every element of the first column of AtU is strictly
positive for all t ≥ 1.

Next, we apply Lemma A.1 to the U -star. The first element of v, defined by (18), is

v1 =
[
NU

N
− 1

]
VH + VL

2 + NHVH +NLVL
N

= 1
2N

[
2(NHVH +NLVL)− (NH +NL)(VH + VL)

]
= 1

2N (NH −NL)(VH − VL), (22)

which is strictly positive. All other elements of v are zero. Since every element of the first
column of At is strictly positive for t ≥ 1, we have

?

V i
U(t + 1) −

?

V i
U(t) > 0 for all i ∈ NU ,

t ≥ 1. For t = 0, we see from direct computation that
?

V U
Ŭ

(1) >
?

V U
Ŭ

(0) = (VH + VL)/2, and
?

V U
U (1) =

?

V U
U (0) = (VH + VL)/2.

Limiting beliefs can be derived from (4). We have

?

V U
U (∞)−

[1
2

?

V U
Ŭ

(∞) + 1
2

?

V U
U (∞)

]
= 0,

implying that
?

V U
Ŭ

(∞) =
?

V U
U (∞), i.e. the limiting beliefs of all uninformed agents are the

same, whether or not they are at the center. Using (4) once again,

?

V U
Ŭ

(∞)− 1
N

∑
j∈NU

?

V U
Ŭ

(∞) = NHVH +NLVL
N

,

or [
1− NU

N

]
?

V U
Ŭ

(∞) = NHVH +NLVL
N

,

so that
?

V U
Ŭ

(∞) =
?

V U
U (∞) = V̄ .

Proof of (iv): Using the results in parts (i) and (ii), the expected belief of an uninformed
agent, conditional on H or L being at the center, is

NH

NH +NL

?

V H
U (t) + NL

NH +NL

?

V L
U (t) = V̄ − (NH −NL)(VH − VL)

2t+1(NH +NL) , (23)
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which is strictly increasing in t and converges to V̄ . Combining this with part (iii) gives us
the desired result. �

Proof of Proposition 3.6 We introduce an additional fictitious round of trading at date
0, before any learning has taken place. In this round we assume that in the U -star, the
uninformed agent at the center trades with L with probability 1, even though her belief is
equidistant from the beliefs of L and H. We will show that E( ?

pt) is strictly increasing in
t for t ≥ 0. For the purposes of Proposition 3.6, the fictitious trading round at date 0 is
irrelevant, since we only need to show monotonicity for t ≥ 1. But the stronger monotonicity
result that we establish, which holds for all t ≥ 0, will be useful for proving Proposition 3.7.

We denote prices in the H-star, L-star and U -star by ?
pH , ?

pL and ?
pU , respectively. These

prices are random and depend on the trading parties, and when the trade involves an un-
informed agent, they depend on the date as well. Let ?

pZXY be the price in the Z-star when
X is chosen to trade and she trades with Y , and at least one of X or Y is uninformed. We
denote an uninformed agent by Ŭ or U depending on whether this agent is at the center or
not. When both trading parties are informed, prices do not depend on who is at the center,
and are given by (5)–(8). We begin by computing expected prices in each of the three stars
(for each of these stars, the agent at the center is chosen to trade with probability 1/N).

E( ?
pHt ) = 1

N
pHL +

(
1− 1

N

) [
NH − 1
N − 1 pHH + NL

N − 1pLH + NU

N − 1
?
pHUH(t)

]
= 1
N

[
VH − α(VH − VL) + (NH − 1)VH +NLVL + αNL(VH − VL) +NU [αVH + (1− α)

?

V H
U (t)]

]
= 1
N

[
NHVH +NLVL + α(NL − 1)(VH − VL) +NU [αVH + (1− α)

?

V H
U (t)]

]
,

E( ?
pLt ) = 1

N
pLH +

(
1− 1

N

) [
NH

N − 1pHL + NL − 1
N − 1 pLL + NU

N − 1
?
pLUL(t)

]
= 1
N

[
VL + α(VH − VL) +NHVH − αNH(VH − VL) + (NL − 1)VL +NU [αVL + (1− α)

?

V L
U (t)]

]
= 1
N

[
NHVH +NLVL − α(NH − 1)(VH − VL) +NU [αVL + (1− α)

?

V L
U (t)]

]
,

E( ?
pUt ) = 1

N
?
pU
ŬL

(t) +
(

1− 1
N

) [
NH

N − 1
?
pU
HŬ

+ NL

N − 1
?
pU
LŬ

+ NU − 1
N − 1

?
pU
UŬ

]
= 1
N

[
αVL + (1− α)

?

V U
Ŭ

(t) +NH [α
?

V U
Ŭ

(t) + (1− α)VH ] +NL[α
?

V U
Ŭ

(t) + (1− α)VL]

+ (NU − 1)[α
?

V U
Ŭ

(t) + (1− α)
?

V U
U (t)]

]
= 1
N

[
αVL + (1− α)(NHVH +NLVL) + [1 + α(N − 2)]

?

V U
Ŭ

(t) + (1− α)(NU − 1)
?

V U
U (t)

]
.
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Therefore,

E( ?
pt) = NH

N
E( ?
pHt ) + NL

N
E( ?
pLt ) + NU

N
E( ?
pUt )

= 1
N2

[
N(NHVH +NLVL)− α(NH −NL)(VH − VL) + αNUVL

+ (1− α)NU

[
NH

?

V H
U (t) +NL

?

V L
U (t)

]
+NU [1 + α(N − 2)]

?

V U
Ŭ

(t) + (1− α)NU(NU − 1)
?

V U
U (t)

]
. (24)

From (23), NH

?

V H
U (t) + NL

?

V L
U (t) is strictly increasing in t, for t ≥ 0, and from Proposition

3.5 (iii), both
?

V U
Ŭ

(t) and
?

V U
U (t) are increasing in t, for t ≥ 0. It follows that E( ?

pt) is strictly
increasing in t, for t ≥ 0.

In order to calculate the limiting expected price, we note that
?

V H
U (∞) = VH ,

?

V L
U (∞) =

VL, and
?

V U
Ŭ

(∞) =
?

V U
U (∞) = V̄ , from Proposition 3.5. Substituting into (24), we obtain

E( ?
p∞) = 1

N2

[
N(NH +NL)V̄ − α(NH −NL)(VH − VL) + αNUVL

+ (1− α)NU(NH +NL)V̄ +NU

[
α(N − 1) + (1− α)NU

]
V̄
]

= V̄ + α

N2

[
−(NH −NL)(VH − VL) +NUVL −NU V̄

]
= V̄ − α

N2(NH +NL)

[
(NH +NL)(NH −NL)(VH − VL)−NU(NH +NL)VL

+NU(NHVH +NLVL)
]

= V̄ − α VH − VL
N2(NH +NL)

[
N(NH −NL) +NLNU

]
.

This completes the proof. �

Proof of Proposition 3.7 The result in part (i) is immediate from (9) and (10). For
part (ii), we first calculate the expected price in the fictitious trading round at date 0 (see
the beginning of the proof of Proposition 3.6). Since

?

V H
U (0) =

?

V L
U (0) =

?

V U
Ŭ

(0) =
?

V U
U (0) =

(VH + VL)/2, we have, from (24):

E( ?
p0) = 1

N2

[
N(NHVH +NLVL)− α(NH −NL)(VH − VL) + αNUVL +NU(N − α)VH + VL

2

]
= 1

2N2

[
N
[
2NHVH + 2NLVL +NU(VH + VL)

]
− 2α(NH −NL)(VH − VL)− αNU(VH − VL)

]
= VH + VL

2 + (NH −NL)(VH − VL)
2N − αVH − VL2N2

[
2(NH −NL) +NU

]
.
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Comparing this expression to (9), we have

E( ?
p0)− E( c

p∞) = VH + VL
2 − V̄ + (NH −NL)(VH − VL)

2N + α
VH − VL

2N2(NH +NL)
·
[
2N2(NH −NL) + 2NNLNU − 2(NH +NL)(NH −NL)−NU(NH +NL)

]
= − NU

2N(NH +NL)(NH −NL)(VH − VL) + α
VH − VL

2N2(NH +NL)
·
[
2N2(NH −NL) + 2NNLNU − 2(NH +NL)(NH −NL)−NU(NH +NL)

]
,

which is increasing in α. Therefore, in order to prove that E( ?
p0) − E( c

p∞) > 0 for α ≥ 1/2,
it suffices to show that E( ?

p0) − E( c
p∞) > 0 when α = 1/2. We say that F ∝ G if F and G

have the same sign (F = cG, for some c > 0). We have

[E( ?
p0)− E( c

p∞)]
∣∣∣
α=1/2

∝ (NH −NL)
[
−2NNU + 2N2 − 2(NH +NL)

]
+ 2NNLNU −NU(NH +NL)

= 2(N − 1)(NH +NL)(NH −NL) + 2NNLNU −NU(NH +NL)

> 0.

In the proof of Proposition 3.6 we showed that E( ?
pt) is strictly increasing in t, for all

t ≥ 0. Also, from Proposition 3.4, E( c
pt) is strictly increasing in t for t ≥ 1. Therefore, we

have the following chain of inequalities:

E( ?
pt) > E( ?

p0) > E( c
p∞) > E( c

pt), ∀t ≥ 1.

This establishes the result. Note that there is no trading at date 0. The expected price in
the fictitious trading round at date 0, E( ?

p0), serves as a lower bound for E( ?
pt) for t ≥ 1.

Since E( c
p∞) is an upper bound for E( c

pt) for t ≥ 1, it suffices to show that E( ?
p0) > E( c

p∞).
The lowest expected price in the star (across time) is higher than the highest expected price
in the complete network. �

Proof of Proposition 3.8 The ex ante payoff of an agent is Π̃ and the payoff for the
buyer is Π (see Section 3.3.2). We use ΠXY to denote the value of Π when the agent chosen
to trade is X and she trades with Y . The corresponding value for the seller −ΠXY . When
both X and Y are informed, ΠXY does not depend on the network or date. Using (5)–(8),
we have

ΠHH = VH − pHH = 0, (25)

ΠLL = VH − pLH = VH − VL, (26)

48



ΠHL = VH − pHL = α(VH − VL), (27)

ΠLH = VH − pLH = (1− α)(VH − VL). (28)

For the complete network, we denote the ex ante payoff by Π̃c, and the payoff of the
buyer by

c

Π. The possible pairings are HL, LH and UL. The values of Π for HL and LH
are given above. For the pairing UL, we write the payoff as

c

ΠUL. It is given by

c

ΠUL = VH − [αVL + (1− α)V̄ ] = αNH +NL

NH +NL

(VH − VL),

so that, using (13),

Var(Π̃c) = E(
c

Π2) = NH

N
(ΠHL)2 + NL

N
(ΠLH)2 + NU

N
(

c

ΠUL)2

= (VH − VL)2

N

[
α2NH + (1− α)2NL +NU

(
αNH +NL

NH +NL

)2]
. (29)

For the star network, we use the notation Π̃∗ for the ex ante payoff, and
?

Π for the payoff
of the buyer. Let

?

ΠZ
XY be the value of

?

Π in the Z-star when the agent chosen to trade is X
and she trades with Y , and at least one of X or Y is uninformed. We have

?

ΠH
UH = 0, (30)

?

ΠL
UL = VH − VL, (31)

?

ΠU
UL = VH − [αVL + (1− α)V̄ ] = αNH +NL

NH +NL

(VH − VL), (32)
?

ΠU
HU = VH − [(1− α)VH + αV̄ ] = αNL

NH +NL

(VH − VL), (33)

?

ΠU
LU = VH − [(1− α)VL + αV̄ ] = (1− α)NH +NL

NH +NL

(VH − VL), (34)
?

ΠU
UU = VH − V̄ = NL

NH +NL

(VH − VL). (35)

Now we calculate the variance of the ex ante payoff:

Var(Π̃∗) = E(
?

Π2) = =
[
NH

N

1
N

+ NL

N

(
1− 1

N

)
NH

N − 1

]
Π2
HL +

[
NL

N

1
N

+ NH

N

(
1− 1

N

)
NL

N − 1

]
Π2
LH

+ NH

N

(
1− 1

N

)
NH − 1
N − 1 Π2

HH + NL

N

(
1− 1

N

)
NL − 1
N − 1 Π2

LL

+ NH

N

(
1− 1

N

)
NU

N − 1(
?

ΠH
UH)2 + NL

N

(
1− 1

N

)
NU

N − 1(
?

ΠL
UL)2

+ NU

N

1
N

(
?

ΠU
UL)2 + NU

N

(
1− 1

N

)
NH

N − 1(
?

ΠU
HU)2+
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+ NU

N

(
1− 1

N

)
NL

N − 1(
?

ΠU
LU)2 + NU

N

(
1− 1

N

)
NU − 1
N − 1 (

?

ΠU
UU)2

= (VH − VL)2

N2

α2NH(NL + 1) + (1− α)2NL(NH + 1) +NL(NL +NU − 1)

+NU

(
αNH +NL

NH +NL

)2
+NHNU

(
αNL

NH +NL

)2

+NLNU

(
(1− α)NH +NL

NH +NL

)2

+NU(NU − 1)
(

NL

NH +NL

)2
.

Comparing this expression with (29), we have

Var(Π̃c)− Var(Π̃∗) = (VH − VL)2

N2

[
α2NH(N −NL − 1) + (1− α)2NL(N −NH − 1)

−NL(NL +NU − 1) +NU(N − 1)
(
αNH +NL

NH +NL

)2
−NHNU

(
αNL

NH +NL

)2

−NLNU

(
(1− α)NH +NL

NH +NL

)2

−NU(NU − 1)
(

NL

NH +NL

)2 ]
.

It is straightforward to check that this expression is increasing in α for α ≥ 1/2. Therefore,
in order to prove that Var(Π̃c) − Var(Π̃∗) > 0 for α ≥ 1/2, it suffices to show that it is
positive for α = 1/2. We have

[Var(Π̃c)− Var(Π̃∗)]
∣∣∣
α=1/2

∝ NH(N −NL − 1) +NL(N −NH − 1)

− 4NL(NL +NU − 1) +NU(N −NL − 1)
(

1 + NL

NH +NL

)2

−NU [NH + 4(NU − 1)]
(

NL

NH +NL

)2

= (NH +NU)(NH −NL) + (NH +NU − 3NL)(NL +NU − 1)

+ 2NLNU(N −NL − 1)
NH +NL

− 3NU(NU − 1)
(

NL

NH +NL

)2

= (NH +NU)(NH −NL) + (NH +NU − 3NL)(NL +NU − 1)

+ 2NLNU(NH +NU − 1)(NH −NL + 2NL)
(NH +NL)2

− 3NU(NU − 1)
(

NL

NH +NL

)2
,

which is positive if NH +NU ≥ 3NL. �

Proof of Proposition 4.2 Proof of (i): Suppose the public signal is correct. Then
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optimists do not update, while all other agents do.
Consider the complete network. We reorder agents so that pessimists come first, followed

by uninformed agents, and then optimists. The adjacency matrix takes the formAL,U AH

0 I

 ,
where AL,U is the (NL + NU) × (NL + NU) matrix that describes the listening structure
among pessimists and uninformed agents, while AH specifies the weights that pessimists and
uninformed agents put on the beliefs of optimists. Every element of AL,U and AH is 1/N .
Let ṼL,U(t) be the belief vector for pessimists and uninformed agents. Then, by Proposition
1 of Pederson (2022), we have the following expression, analogous to (3):

c̃

VL,U(t) = AtL,U

1NL
VL

1NU
VH

+
t−1∑
k=0

AkL,U1NL+NU

NHVH
N

.

Equation (19) applies to powers of AL,U with NL +NU replacing NU . Thus we have

c̃

VL,U(t) = 1
NL +NU

(
NL +NU

N

)t
1NL+NU

1>NL+NU

1NL
VL

1NU
VH


+
[
I + 1

NL +NU

t−1∑
k=1

(
NL +NU

N

)k
1NL+NU

1>NL+NU

]
1NL+NU

NHVH
N

,

for t ≥ 1. Hence all elements of the vector
c̃

VL,U(t) are the same. We denote the common
value by

c

VL,U(t) =
c

VL(t) =
c

VU(t). It is given by

c

VL,U(t) =
(
NL +NU

N

)t NLVL +NUVH
NL +NU

+
[
1 +

t−1∑
k=1

(
NL +NU

N

)k] NHVH
N

=
(
NL +NU

N

)t NLVL +NUVH
NL +NU

+
[
1−

(
NL +NU

N

)t]
VH

= VH −
(
NL +NU

N

)t NL(VH − VL)
NL +NU

. (36)

If H is chosen to trade, she trades with L or U , who have the same beliefs, and if L or U is
chosen to trade, she trades with H, giving rise to the following prices:

c
pHL(t) = c

pHU(t) = (1− α)VH + α
c

VL,U(t) = VH − α[VH −
c

VL,U(t)],
c
pLH(t) = c

pLH(t) = αVH + (1− α)
c

VL,U(t) = VH − (1− α)[VH −
c

VL,U(t)].
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Therefore,

E( c
pt) = NH

N
c
pHL(t) + NL +NU

N
c
pLH(t)

= VH −
VH − VL,U(t)

N

[
αNH + (1− α)(NL +NU)

]
. (37)

Now consider the H-star. Optimists do not update their beliefs, including the optimist at
the center. Since uninformed agents have the same beliefs as the center, they do not update
either. Only pessimists update. Starting from

?

V H
L (0) = VL, and repeatedly updating using

?

V H
L (t) = [

?

V H
L (t− 1) + VH ]/2, we obtain

?

V H
L (t) = 1

2tVL + 1
2

(
1 + 1

2 + 1
22 + . . .+ 1

2t−1

)
VH

= 1
2tVL +

(
1− 1

2t
)
VH

= VH −
1
2t (VH − VL). (38)

If the center is chosen to trade, she trades with L. If the agent chosen to trade is not at the
center, she must trade with the center. Prices for different pairings are

?
pHHL(t) = (1− α)VH + α

?

V H
L (t) = VH − α[VH −

?

V H
L (t)],

?
pHLH(t) = αVH + (1− α)

?

V H
L (t) = VH − (1− α)[VH −

?

V H
L (t)],

?
pHHH = ?

pHUH = VH .

Therefore,

E( ?
pHt ) = 1

N
?
pHHL(t) +

(
1− 1

N

) [
NH − 1
N − 1

?
pHHH + NL

N − 1
?
pHLH(t) + NU

N − 1
?
pHUH

]

= VH −
VH −

?

V H
L (t)

N

[
α + (1− α)NL

]
. (39)

Now we compare prices in the complete network and in the H-star, using (36)–(39):

E( c
pt)− E( ?

pHt ) = VH − VL
2tN [α + (1− α)NL]−

(
NL +NU

N

)t NL(VH − VL)
N(NL +NU)

[
αNH + (1− α)(NL +NU)

]
,

which is decreasing in α since NH > NL +NU . Hence,

E( c
pt)− E( ?

pHt ) ≥ [E( c
pt)− E( ?

pHt )]
∣∣∣
α=1
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∝ 1−
[

2(NL +NU)
N

]t
NHNL

NL +NU

,

which is positive for sufficiently large t (note that NH > NL+NU implies that 2(NL+NU) <
N).

Next, we compare the U -star to the H-star. The initial belief of U agents is VH . We
denote the U at the center by Ŭ to distinguish this agent from a U who is not at the center.
In the first updating round at t = 1, the belief of the center goes down from

?

V U
Ŭ

(0) = VH to

?

V U
Ŭ

(1) = (NH +NU)VH +NLVL
N

= VH −
NL

N
(VH − VL).

For t ≥ 1,
?

V U
Ŭ

(t) increases monotonically to VH . Since
?

V U
L (1) =

?

V H
L (1) = (VH + VL)/2, we

have, for t ≥ 1,
?

V U
L (t) ≤

?

V H
L (t) = VH − [VH −

?

V H
L (t)].

Clearly,
?

V U
U (t) ≤ VH .

For now we restrict ourselves to t ≥ 2. We will check the case of t = 1 later.

?

V U
Ŭ

(t) = 1
N

[
NHVH +NL

?

V U
L (t− 1) + (NU − 1)

?

V U
U (t− 1) +

?

V U
Ŭ

(t− 1)
]

<
1
N

[
(NH +NU − 1)VH +NL

?

V H
L (t− 1) +

?

V U
Ŭ

(t)
]
,

so that, using (38),

?

V U
Ŭ

(t) < 1
N − 1

[
(NH +NU − 1)VH +NL

?

V H
L (t− 1)

]
= VH −

NL

N − 1[VH −
?

V H
L (t− 1)]

= VH − 2 NL

N − 1[VH −
?

V H
L (t)].

Prices for different pairings satisfy

?
pU
ǓH

(t) = αVH + (1− α)
?

V U
Ŭ

(t) < VH − 2(1− α) NL

N − 1[VH −
?

V H
L (t)],

?
pU
HŬ

(t) = (1− α)VH + α
?

V U
Ŭ

(t) < VH − 2α NL

N − 1[VH −
?

V H
L (t)],

?
pU
LŬ

(t) = (1− α)
?

V U
L + α

?

V U
Ŭ

(t) < VH −
[
(1− α) + 2α NL

N − 1

]
[VH −

?

V H
L (t)],

?
pU
UŬ

(t) = (1− α)
?

V U
U + α

?

V U
Ŭ

(t) < VH − 2α NL

N − 1[VH −
?

V H
L (t)].
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Note that if the center is chosen trade, she may choose to trade with L or with H, depending
on the parameters, at a price which is less than or equal to ?

pU
ŬH

. The expected price in the
U -star satisfies

E( ?
pUt ) ≤ 1

N
?
pU
ŬH

(t) +
(

1− 1
N

) [
NH

N − 1
?
pU
HŬ

(t) + NL

N − 1
?
pU
LŬ

(t) + NU − 1
N − 1

?
pU
UŬ

(t)
]

< VH −
NL

N(N − 1)
[
2α(N − 1) + (1− α)(N + 1)

]
[VH −

?

V H
L (t)].

Therefore, using (39),

E( ?
pHt )− E( ?

pUt ) > VH −
?

V H
L (t)

N(N − 1)

[
NL

[
2α(N − 1) + (1− α)(N + 1)

]
− (N − 1)

[
α + (1− α)NL

]]
,

which is positive. This establishes the desired result for t ≥ 2.
For t = 1, we can calculate all the relevant prices. From (38) and (39),

E( ?
pH1 ) = VH −

VH − VL
2N

[
α + (1− α)NL

]
.

In the U -star,

?
pU
ǓH

(1) = VH − (1− α)NL

N
(VH − VL),

?
pU
HŬ

(1) = VH − α
NL

N
(VH − VL),

?
pU
LŬ

(1) = VH − (1− α)VH − VL2 − αNL

N
(VH − VL),

?
pU
UŬ

(1) = VH − α
NL

N
(VH − VL),

so that
E( ?
pU1 ) ≤ VH −

NL(VH − VL)
2N2

[
2α(N − 1) + (1− α)(N + 2)

]
.

Therefore,

E( ?
pH1 )− E( ?

pU1 ) ≥ VH − VL
2N2

[
NL

[
2α(N − 1) + (1− α)(N + 2)

]
−N

[
α + (1− α)NL

]]
,

which is positive.
Finally, we compare the L-star to the U -star. We denote the L at the center by L̆ to

distinguish this agent from an L who is not at the center. At t = 1, we have
?

V L
L̆

(1) =
?

V U
Ŭ

(1) = [(NH + NU)VH + NLVL]/N ,
?

V L
U (1) = (VH + VL)/2 <

?

V U
U (1) = VH , and

?

V L
L (1) =

VL <
?

V U
L (1) = (VH + VL)/2. Hence, for all t ≥ 1,

?

V L
L̆

(t) ≤
?

V U
Ŭ

(t),
?

V L
U (t) <

?

V U
U (t), and
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?

V L
L (t) <

?

V U
L (t). If a noncentral agent is chosen to trade, she must trade with the center,

resulting in a price that is lower in the L-star. If the center is chosen to trade, she always
trades with L in the L-star, but may trade with L or with H in the U -star. Either way, the
price in the L-star is lower. It follows that E( ?

pLt ) < E( ?
pUt ), for all t ≥ 1.

Proof of (ii): Suppose the public signal is incorrect. Then pessimists do not update, while
all other agents do. In the complete network, using the analysis and notation analogous to
that in part (i), we get

c

VH,U(t) = VL +
(
NH +NU

N

)t NH(VH − VL)
NH +NU

, (40)

E( c
pt) = VL +

c

VH,U(t)− VL
N

[
αNL + (1− α)(NH +NU)

]
. (41)

The L-star is analogous to the H-star in part (i). We obtain

?

V L
H (t) = VL + 1

2t (VH − VL),

E( ?
pLt ) = VL +

?

V L
H (t)− VL

N

[
α + (1− α)NH

]
.

Therefore,

E( c
pt)− E( ?

pLt ) = VH − VL
2tN2

2
(

2(NH +NU)
N

)t−1

NH

[
αNL + (1− α)(NH +NU)

]
−N [α + (1− α)NH ]

 .
Since NH > NL +NU , we have 2(NH +NU) > 2NH > N , and hence E( c

pt)− E( ?
pLt ) > 0.

Now consider the H-star. The beliefs of H agents converge monotonically to VL. The H
agent at the center, who we identify by the notation H̆, converges faster to VL than other H
agents. For t ≥ 1, we have

?

V H
H (t) >

?

V H
H̆

(t) ≥
c

VH(t), and
?

V H
U (t) > VL. Using (40), the prices

for different pairings satisfy

?
pH
H̆L

(t) = αVL + (1− α)
?

V H
H̆

(t) ≥ αVL + (1− α)
c

VH(t) = VL + (1− α)[
c

VH(t)− VL],
?
pH
LH̆

(t) = (1− α)VL + α
?

V H
H̆

(t) ≥ (1− α)VL + α
c

VH(t) = VL + α[
c

VH(t)− VL],
?
pH
UH̆

(t) = (1− α)
?

V H
U (t) + α

?

V H
H̆

(t) > (1− α)VL + α
c

VH(t) = VL + α[
c

VH(t)− VL],
?
pH
HH̆

(t) = (1− α)
?

V H
H (t) + α

?

V H
H̆

(t) >
c

VH(t) = VL + [
c

VH(t)− VL].

Therefore,

E( ?
pHt ) = 1

N
?
pH
H̆L

(t) +
(

1− 1
N

) [
NH − 1
N − 1

?
pH
HH̆

(t) + NL

N − 1
?
pH
LH̆

(t) + NU

N − 1
?
pH
UH̆

(t)
]
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> VL +
c

VH(t)− VL
N

[
NH + α(NL +NU − 1)

]
.

Comparing with (41), we get

E( ?
pHt )− E( c

pt) >
c

VH(t)− VL
N

[
NH + α(NL +NU − 1)− [αNL + (1− α)(NH +NU)]

]
=

c

VH(t)− VL
N

[
α(NH − 1) + (2α− 1)NU

]
.

Since NH > NL +NU ≥ NU + 1, and α ≥ 1/3,

E( ?
pHt )− E( c

pt) >
c

VH(t)− VL
N

(3α− 1)NU ≥ 0.

This completes the proof. �
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B2 Introduction

This Online Appendix contains additional results (Section B3) as well as details of instruc-
tions that subjects were given in the experiments (Sections B4 and B5).

B3 Core-Periphery Network

In this section we provide some results for the core-periphery network as described in Section
3.2 of the paper (for convenience, we repeat this description below). The numbers for
equations, lemmas and propositions correspond to those in the main paper, unless they are
specific to the Online Appendix, in which case the numbers are prefixed by “B”.

B3.1 Model and Results

We consider a core-periphery network with M agents in the core and the remaining N −M
in the periphery. An agent in the core has a link with every other agent in the core; thus
the core is a complete subnetwork. In addition, each agent in the core has a link with
K := (N −M)/M agents in the periphery; this is the “clientele” of this core agent. All
agents in the core have a clientele of the same size, and these clienteles do not overlap. An
agent in the periphery has only one link, to the core agent whose clientele she belongs to.

We assume that there are agents of all three types in the core as well as in each clientele,
and within each of these their relative proportions are the same as in the entire network. We
use a “hat” for the number of agents of a given type in the core, and a “check” for the number
in each clientele. Thus the number of optimists in the core is N̂H := (NH/N)M ≥ 1, the
number of optimists in each clientele is ŇH := (NH/N)K ≥ 1, and similarly for pessimists
and uninformed agents. We denote the belief of an uninformed agent at time t by

�
VU(t),

�
V H
U (t),

�
V L
U (t) or

�
V U
U (t), depending on whether she is in the core, in the clientele of an optimist,

in the clientele of a pessimist, or in the clientele of an uninformed agent.

Proposition B3.1 (Core-periphery network: Beliefs) In the core-periphery network,
the beliefs of uninformed agents, for t ≥ 0, are as follows:

i. The belief of an uninformed agent in the periphery linked to an informed agent in
the core is the same as the corresponding belief in the star, i.e.

�
V H
U (t) =

?

V H
U (t) and

�
V L
U (t) =

?

V L
U (t).

ii. Both
�
VU(t) and

�
V U
U (t) are increasing in t, and converge to V̄ as t→∞.
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iii. The expected belief of an uninformed agent is strictly increasing in t, and converges to
V̄ as t→∞.

All proofs are in the Section B3.2. We denote the price at time t in the core-periphery
network by �

pt.

Proposition B3.2 (Core-periphery network: Prices) In the core-periphery network, E( �pt)
is strictly increasing in t for t ≥ 1, and converges to

E( �p∞) = V̄ − α M(VH − VL)
N2(NH +NL)

[
N(NH −NL) +NLNU

]
. (B42)

Comparing (10) and (B42), we see that the limiting expected price in the core-periphery
network is the same as in the star if we setM = 1. However, this is just a formal relationship
as M = 1 is not admissible, given our assumption that there are agents of all three types in
the core.

The results on informational efficiency and welfare are the same as in the star:

Proposition B3.3 (Core-periphery vs complete network: Informational efficiency)

i. The core-periphery network is asymptotically more informationally efficient than the
complete network, i.e. E( �p∞) > E( c

p∞).

ii. Suppose α ≥ 1/2. Then the core-periphery network is more informationally efficient
than the complete network at every date, i.e. E( �pt) > E( c

pt) for all t ≥ 1.

Proposition B3.4 (Core-periphery vs complete network: Welfare) Consider the static
limiting economy as t → ∞. Suppose α ≥ 1/2 and NH + NU ≥ 3NL. Then welfare in the
core-periphery network is higher than in the complete network.

B3.2 Proofs

Proof of Proposition B3.1 We put agents in the following order: uninformed agents in
the core, uninformed agents in clientele 1, 2, . . ., optimists in the core, optimists in clientele
1, 2, . . ., pessimists in the core, and pessimists in clientele 1, 2, . . . . The clienteles are also
ordered in the same way: first the clienteles of uninformed agents in the core, then the
clienteles of optimists in the core, and finally the clienteles of pessimists in the core. We
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have

AU =



1
M+K

1
M+K . . . 1

M+K
1

M+K1>
ŇU

0 . . . 0 0 0 . . . 0
1

M+K
1

M+K . . . 1
M+K 0 1

M+K1>
ŇU

. . . 0 0 0 . . . 0
... ... . . . ... ... ... . . . ... ... ... . . . ...
1

M+K
1

M+K . . . 1
M+K 0 0 . . . 1

M+K1>
ŇU

0 0 . . . 0
1
21ŇU

0 . . . 0 1
2IŇU

0 . . . 0 0 0 . . . 0
0 1

21ŇU
. . . 0 0 1

2IŇU
. . . 0 0 0 . . . 0

... ... . . . ... ... ... . . . ... ... ... . . . ...
0 0 . . . 1

21ŇU
0 0 . . . 1

2IŇU
0 0 . . . 0

0 0 . . . 0 0 0 . . . 0 1
2IŇU

0 . . . 0
0 0 . . . 0 0 0 . . . 0 0 1

2IŇU
. . . 0

... ... . . . ... ... ... . . . ... ... ... . . . ...
0 0 . . . 0 0 0 . . . 0 0 0 . . . 1

2IŇU



,

AH =



1
M+K

1
M+K . . . 1

M+K
1

M+K1>
ŇH

0 . . . 0 0 0 . . . 0
1

M+K
1

M+K . . . 1
M+K 0 1

M+K1>
ŇH

. . . 0 0 0 . . . 0
... ... . . . ... ... ... . . . ... ... ... . . . ...
1

M+K
1

M+K . . . 1
M+K 0 0 . . . 1

M+K1>
ŇH

0 0 . . . 0
0 0 . . . 0 0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0 0 0 . . . 0
... ... . . . ... ... ... . . . ... ... ... . . . ...
0 0 . . . 0 0 0 . . . 0 0 0 . . . 0

1
21ŇU

0 . . . 0 0 0 . . . 0 0 0 . . . 0
0 1

21ŇU
. . . 0 0 0 . . . 0 0 0 . . . 0

... ... . . . ... ... ... . . . ... ... ... . . . ...
0 0 . . . 1

21ŇU
0 0 . . . 0 0 0 . . . 0

0 0 . . . 0 0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0 0 0 . . . 0
... ... . . . ... ... ... . . . ... ... ... . . . ...
0 0 . . . 0 0 0 . . . 0 0 0 . . . 0



.

Both matrices consist of three row blocks. The first block has N̂U rows corresponding to
uninformed agents in the core. The second row block has N̂UŇU rows corresponding to
uninformed agents in clientele 1, 2, . . . N̂U . These are uninformed agents in the periphery
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who have a link with an uninformed agent in the core. The third row block has N̂HŇU

rows corresponding to uninformed agents in clienteles N̂U + 1, . . . , N̂U + N̂H . These are
uninformed agents in the periphery who have a link with an optimist in the core. The fourth
row block has N̂LŇU rows corresponding to uninformed agents in the remaining clienteles,
each of which is linked to a pessimist in the core. The third and fourth row blocks look like
a single row block in the case of AU . The matrix AL is analogous to AH ; the only difference
is that the third and fourth row blocks are swapped.

Now we use Lemma A.1. The elements of the vector v corresponding to the four
row blocks of AU (also of AH and AL) are the same. We denote these four values by
v(1), v(2), v(3), and v(4). We have

v(1) =
[
N̂U + ŇU

M +K
− 1

]
VH + VL

2 + N̂H + ŇH

M +K
VH + N̂L + ŇL

M +K
VL

=
[
NU

N
− 1

]
VH + VL

2 + NH

N
VH + NL

N
VL,

which is strictly positive, from (22). Also v(2) = 0, and

v(3) =
[1
2 − 1

]
VH + VL

2 + 1
2VH = VH − VL

4 ,

v(4) =
[1
2 − 1

]
VH + VL

2 + 1
2VL = −VH − VL4 .

We partition the vector AtUv in the same way we did for v.
All elements of the first row block of AUv are the same, given by [N̂U/(M +K)]v(1) > 0.

All elements of the first row block of A2
Uv = AU(AUv) are also the same, and strictly positive,

and so on. Therefore, from (17),
�
VU(t) is strictly increasing in t, for t ≥ 1. Directly computing

Ṽ (1), using (3), we see that
�
VU(1) >

�
VU(0) = (VH + VL)/2. Thus

�
VU(t) is strictly increasing

in t, for t ≥ 0.
All the elements of the second row block of AUv are the same, given by (1/2)v(1) > 0.

All elements of the second row block of A2
Uv = AU(AUv) are also the same, and strictly

positive, and so on. Using the same argument as in the preceding paragraph,
�
V U
U (t) is

strictly increasing in t, for t ≥ 1, and
�
V U
U (1) =

�
V U
U (0) = (VH + VL)/2.

The analysis for the beliefs of uninformed agents in the periphery who are linked to an
informed agent in the core is the same as for the star. From (23) it follows that NH

�
V H
U (t) +

NL

�
V L
U (t) is strictly increasing in t, and converges to V̄ .
Limiting beliefs for uninformed agents in the core, and uninformed agents in the periphery
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linked to an uninformed agent in the core, can be derived from (4). We have

�
V U
U (∞)−

[1
2
�
VU(∞) + 1

2
�
V U
U (∞)

]
= 0,

implying that
�
VU(∞) =

�
V U
U (∞). Using (4) once again,

�
VU(∞)− N̂U + ŇU

M +K

�
VU(∞) = (N̂H + ŇH)VH + (N̂L + ŇL)VL

M +K
,

or [
1− NU

N

]
�
VU(∞) = NHVH +NLVL

N
,

so that
�
VU(∞) =

�
V U
U (∞) = V̄ . �

Proof of Proposition B3.2 As in the proof of Proposition 3.6, we introduce an additional
fictitious round of trading at date 0, in which we assume that an uninformed agent in the
core trades with L with probability 1. The price at any date depends on which agent is
chosen to trade, whether the chosen agent is in the core or in the periphery, and in the
latter case, what type of agent she is linked to. The notation for prices that arise in each
case is just as for the star, except that the superscript is interpreted differently. We use
a superscript only when an uninformed agent in the periphery is chosen to trade, and the
superscript is the type of agent she is linked to. Thus �

pXUX is the price that arises when an
uninformed agent in the periphery is chosen to trade and she trades with X (who must be
the only agent she has a link to), while �

pUX is the price that results when a core agent U is
chosen to trade and she trades with X. The price �

pUUU arises when an uninformed agent in
the periphery is chosen to trade and she trades with an uninformed agent in the core. Let
E( �pt|H) be the expected price at date t if H is chosen to trade, and similarly for L and U .
We have

E( �pt|H) = M

N
pHL +

(
1− M

N

) [
NH

N
pHH + NL

N
pHL + NU

N
�
pHU(t)

]
,

E( �pt|L) = M

N
pLH +

(
1− M

N

) [
NH

N
pLH + NL

N
pLL + NU

N
�
pLU(t)

]
,

E( �pt|U) = M

N
�
pUL(t) +

(
1− M

N

) [
NH

N
�
pHUH(t) + NL

N
�
pLUL(t) + NU

N
�
pUUU(t)

]
.

We can now compute the expected price in the core-periphery network, using (5)–(8):

E( �pt) = NH

N
E( �pt|H) + NL

N
E( �pt|L) + NU

N
E( �pt|U)
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= M

N2

[
NHpHL +NLpLH +NU

�
pUL(t)

]
+ 1
N2

(
1− M

N

) [
N2
HpHH +NHNLpHL +NHNU

�
pHU(t) +NHNLpLH +N2

LpLL

+NLNU
�
pLU(t) +NHNU

�
pHUH(t) +NLNU

�
pLUL(t) +N2

U
�
pUUU(t)

]
= M

N2

[
NHVH +NLVL − α(NH −NL)(VH − VL) +NU [αVL + (1− α)

�
VU(t)]

]
+ 1
N2

(
1− M

N

) [
N2
HVH +N2

LVL +NHNL(VH + VL) +NHNU [(1− α)VH + α
�
VU(t)]

+NLNU [(1− α)VL + α
�
VU(t)] +NHNU [αVH + (1− α)

�
V H
U (t)]

+NLNU [αVL + (1− α)
�
V L
U (t)] +N2

U [α
�
VU(t) + (1− α)

�
V U
U (t)]

]
= M

N2

[
NHVH +NLVL − α(NH −NL)(VH − VL) +NU [αVL + (1− α)

�
VU(t)]

]
+ 1
N2

(
1− M

N

) [
N(NHVH +NLVL) + (1− α)NU

[
NH

�
V H
U (t) +NL

�
V L
U (t)

]
+NU

[
αN

�
VU(t) + (1− α)NU

�
V U
U (t)

]]
. (B43)

In the proof of Proposition B3.1 we showed that
�
VU(t) is strictly increasing in t,

�
V U
U (t) is

increasing in t, and NH

�
V H
U (t) + NL

�
V L
U (t) is strictly increasing in t, for t ≥ 0. Therefore,

E( �pt) is strictly increasing in t, for t ≥ 0.
To calculate the limiting price, we note from Proposition B3.1 that

�
V H
U (∞) = VH ,

�
V L
U (∞) = VL, and

�
VU(∞) =

�
V U
U (∞) = V̄ . Therefore, from (B43),

E( �p∞) = M

N2

[
NV̄ − α(NH −NL)(VH − VL)− αNU(V̄ − VL)

]
+ 1
N2

(
1− M

N

) [
N(NH +NL)V̄ + (1− α)NU(NH +NL)V̄ +NU [αN + (1− α)NU ]V̄

]
= M

N2

[
NV̄ − α(NH −NL)(VH − VL)− αNU(V̄ − VL)

]
+
(

1− M

N

)
V̄

= V̄ − αM
N2

[
(NH −NL)(VH − VL) +NU(V̄ − VL)

]
= V̄ − α M(VH − VL)

N2(NH +NL)
[
N(NH −NL) +NLNU

]
.

This completes the proof. �

Proof of Proposition B3.3 Proof of (i): Since there is at least one pessimist in each
clientele, i.e.

ŇL = NL

N
K = NL

N

N −M
M

≥ 1,
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we have
M ≤ NNL

N +NL

. (B44)

Therefore, from (B42) and (9),

E( �p∞) ≥ V̄ − α NL(VH − VL)
N(N +NL)(NH +NL)

[
N(NH −NL) +NLNU

]
> E( c

p∞).

Proof of (ii): We proceed along the same lines as in the proof of Proposition 3.7. We begin
by calculating the expected price in the core-periphery network in the fictitious trading round
at date 0. From (B43),

E( �p0) = M

2N2

[
2(NHVH +NLVL)− 2α(NH −NH)(VH − VL)− αNU(VH − VL) +NU(VH + VL)

]
+ 1

2N2

(
1− M

N

) [
2N(NHVH +NLVL) + (1− α)NU(NH +NL)(VH + VL)

+NU [αN + (1− α)NU ](VH + VL)
]

= M

2N2

[
N(VH + VL) + [(1− 2α)(NH −NL)− αNU ](VH − VL)

]
+ 1

2N

(
1− M

N

) [
2(NHVH +NLVL) +NU(VH + VL)

]
= M

2N2

[
N(VH + VL) + [(1− 2α)(NH −NL)− αNU ](VH − VL)

]
+ 1

2N

(
1− M

N

) [
(NH −NL)(VH − VL) +N(VH + VL)

]
= VH + VL

2 + 1
2N (NH −NL)(VH − VL)− αM(VH − VL)

2N2

[
2(NH −NL) +NU

]
.

Using (B44), we obtain

E( �p0 ≥
VH + VL

2 + 1
2N (NH −NL)(VH − VL)− αNL(VH − VL)

2N(N +NL)
[
2(NH −NL) +NU

]
.

Using this expression together with (9), and restricting α to the interval [1/2, 1], we have

E( �p0)− E( c
p∞) ≥ VH + VL

2 − V̄ + 1
2N (NH −NL)(VH − VL)

+ α
VH − VL

2N(N +NL)(NH +NL)
[
2N(N +NL)(NH −NL) + 2NLNU(N +NL)

− 2NL(NH +NL)(NH −NL)−NLNU(NH +NL)
]

≥ VH + VL
2 − V̄ + 1

2N (NH −NL)(VH − VL)
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+ VH − VL
4N(N +NL)(NH +NL)

[
2N(N +NL)(NH −NL) + 2NLNU(N +NL)

− 2NL(NH +NL)(NH −NL)−NLNU(NH +NL)
]

= VH − VL
4N(N +NL)(NH +NL)

[
2(N +NL)(NH +NL)(NH −NL) + 2NLNU(N +NL)

− 2NL(NH +NL)(NH −NL)−NLNU(NH +NL)
]

> 0.

In the proof of Proposition B3.2 we showed that E( �pt) is strictly increasing in t, for all t ≥ 0.
Also, from Proposition 3.4, E( c

pt) is strictly increasing in t for t ≥ 1. Therefore, we have the
following chain of inequalities:

E( �pt) > E( �p0) > E( c
p∞) > E( c

pt), ∀t ≥ 1.

This establishes the result. �

Proof of Proposition B3.4 Calculations for the variance of the ex ante payoff in the
core-periphery network are analogous to those for the star, with the analogous notation (�
replaces ?). We use a superscript only for payoffs that arise when an uninformed agent in
the periphery is chosen to trade; the superscript identifies the type of agent she is linked
to. Limiting beliefs of uninformed agents mirror those in the star (Proposition B3.1). Hence
payoffs that involve a trade with an uninformed agent are given by (30)–(35), where we
simply replace ? with �, and drop the U superscript in (31)–(34), since these payoffs do not
involve a trade with an uninformed agent in the periphery. Payoffs from trades between two
informed agents are given by (25)–(28). Using this information, and (13), we can calculate
the variance of the ex ante payoff Π̃�:

Var(Π̃�) = E(
�
Π2) =

[
M

N

NH

N
+
(

1− M

N

)(
NH

N

NL

N

)]
Π2
HL +

[
M

N

NL

N
+
(

1− M

N

)(
NL

N

NH

N

)]
Π2
LH

+
(

1− M

N

)
NH

N

NH

N
Π2
HH +

(
1− M

N

)
NL

N

NL

N
Π2
LL

+
(

1− M

N

)
NU

N

NH

N
(
�
ΠH
UH)2 +

(
1− M

N

)
NU

N

NL

N
(
�
ΠL
UL)2

+ M

N

NU

N

�
Π2
UL +

(
1− M

N

)
NH

N

NU

N

�
Π2
HU

+
(

1− M

N

)
NL

N

NU

N

�
Π2
LU +

(
1− M

N

)
NU

N

NU

N
(
�
ΠU
UU)2

= (VH − VL)2

N3

MN

(
α2NH + (1− α)2NL +NU

(
αNH +NL

NH +NL

)2)
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+ (N −M)
(

[α2 + (1− α)2]NHNL +NL(NL +NU)

+NHNU

(
αNL

NH +NL

)2
+NLNU

(
(1− α)NH +NL

NH +NL

)2

+N2
U

(
NL

NH +NL

)2 ).
Comparing this expression with (29), we get

Var(Π̃c)− Var(Π̃�) = (N −M)(VH − VL)2

N3

N (
α2NH + (1− α)2NL +NU

(
αNH +NL

NH +NL

)2)

−
(

[α2 + (1− α)2]NHNL +NL(NL +NU) +NHNU

(
αNL

NH +NL

)2

+NLNU

(
(1− α)NH +NL

NH +NL

)2

+N2
U

(
NL

NH +NL

)2 ).
It is easy to check that this expression is increasing in α for α ≥ 1/2. Therefore, in order to
prove that Var(Π̃c)−Var(Π̃�) > 0 for α ≥ 1/2, it suffices to show that Var(Π̃c)−Var(Π̃�) > 0
for α = 1/2. We have

[Var(Π̃c)− Var(Π̃�)]
∣∣∣
α=1/2

∝ N(NH +NL) +NNU

(
1 + NL

NH +NL

)2

− 2NHNL − 4NL(NL +NU)−NHNU

(
NL

NH +NL

)2

−NLNU

(
1 + NL

NH +NL

)2
− 4N2

U

(
NL

NH +NL

)2

= NH(NH +NU)− 3NL(NL +NU)

+NU(NH +NU)
(

1 + NL

NH +NL

)2
−NU(NH + 4NU)

(
NL

NH +NL

)2

= (NH +NU)2 − 3NL(NL +NU) + 2NUNL(NH +NU)
NH +NL

− 3N2
U

(
NL

NH +NL

)2

= (NH +NU)(NH +NU − 3NL) + 3NL(NH −NL)

+ 2NUNL(NH +NU)(NH −NL + 2NL)
(NH +NL)2 − 3N2

U

(
NL

NH +NL

)2
,

which is positive if NH +NU ≥ 3NL. �
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B4 Instructions for the Experiments

Instructions for experiments for fully connected markets (FC) with no public
information

This is an economic experiment on decision making in financial markets. The instructions
are simple and if you follow them carefully, you can earn a considerable amount of money.
Your earnings will be communicated to you privately, and paid in cash at the end of the
experiment. During the experiment your earnings will be measured in points that will become
e at the end of the experiment using a rate of e1 for every 50 accumulated points, plus a
fixed amount of e3, as show-up fee for participating. The corresponding amount in e will
be paid in cash at the end of the experiment. At the beginning of the experiment each of
you has been assigned a number. From now on, you and the rest of the participants will be
identified by that number. No communication is allowed among the participants during the
experiment. Any participant who does not comply will be invited to leave the experiment
without payment.

The market
The experiment consists of 15 periods of 3 minutes each. The market is composed of 15
participants. At the beginning of each period you will be randomly paired with another
14 participants. At the beginning of each period your initial portfolio consists of 10 units
of the asset and 1000 ECU cash. Each participant has the same initial portfolio. In each
period, you and the other participants will have the opportunity to buy and/or sell the asset.
You can buy and sell as many units of the asset as you want, although each bid, ask and
transaction involves the exchange of a single unit. Therefore, the asset is exchanged one unit
at a time.

Information and dividends
At the end of each period, you will receive a given dividend for each unit of the asset you
hold in your portfolio. The value of the dividend can be 0 or 10 with the same probability.
Thus, without additional information, the value of the asset can be 0 or 10 with a probability
of 50%. Likewise, you will receive private information about the value of the dividend at the
end of the period in the form of signals.

• A private signal equal to 0 means that with a probability of 80% the value of the
dividend will be 0 at the end of the period.

• A private signal equal to 10 means that with a probability of 80% the value of the
dividend will be 10 at the end of the period.

11



This will be your private information and therefore you will be the only one able to see it.
At the end of each period, your profit will be the cash you have at the end of the period plus
the dividend for each unit of the asset you own minus the 1000 ECU that is given to you at
the beginning of the period. Your payment at the end of the experiment corresponds to the
accumulated profit in all periods. If at any time you have any question or problem, do not
hesitate to contact the experimentalist. Remember that it is important that you understand
correctly the operation of the market, since your earnings depend both on your decisions
and on the decisions of the other participants in your market.

Instructions for experiments for medium/low connected markets (MC, LC) with
no public information

Welcome. This is an economic experiment on decision making in financial markets. The
instructions are simple and if you follow them carefully, you can earn a considerable amount
of money. Your earnings will be communicated to you privately, and paid in cash at the end
of the experiment. During the experiment your earnings will be measured in points that will
become e at the end of the experiment using a rate of e1 for every 50 accumulated points,
plus a fixed amount of e3, as show-up fee for participating. The corresponding amount in e
will be paid in cash at the end of the experiment. At the beginning of the experiment each of
you has been assigned a number. From now on, you and the rest of the participants will be
identified by that number. No communication is allowed among the participants during the
experiment. Any participant who does not comply will be invited to leave the experiment
without payment.

The market
The experiment consists of 15 periods of 3 minutes each. The market is composed of 15
participants connected to each other through a network. At the beginning of each period
you will be paired randomly with a subset of participants. At the beginning of each period
your initial portfolio consists of 10 units of the asset and 1000 ECU cash. Each participant
has the same initial portfolio. In each period, you and the other participants will have the
opportunity to buy and/or sell the asset only with those participants with whom you are
connected. You can buy and sell as many units of the asset as you want, although each bid,
ask and transaction involves the exchange of a single unit. Therefore, the asset is exchanged
one unit at a time.

Information and dividends
At the end of each period, you will receive a given dividend for each unit of the asset you
hold in your portfolio. The value of the dividend can be 0 or 10 with the same probability.
Thus, without additional information, the value of the asset can be 0 or 10 with a probability
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of 50%. Likewise, you will receive private information about the value of the dividend at the
end of the period in the form of signals.

• A private signal equal to 0 means that with a probability of 80% the value of the
dividend will be 0 at the end of the period.

• A private signal equal to 10 means that with a probability of 80% the value of the
dividend will be 10 at the end of the period.

This will be your private information and therefore you will be the only one able to see it.
At the end of each period, your profit will be the cash you have at the end of the period
plus the dividend for each unit of the asset you own minus the 1000 ECU that were given to
you at the beginning of the period. Your payment at the end of the experiment corresponds
to the accumulated profit in all periods. If at any time you have any question or problem,
do not hesitate to contact the experimentalist. Remember that it is important that you
understand correctly the operation of the market, since your earnings depend both on your
decisions and on the decisions of the other participants in your market.

Instructions for experiments for medium/low connected markets (MC, LC) with
public information

Welcome. This is an economic experiment on decision making in financial markets. The
instructions are simple and if you follow them carefully, you can earn a considerable amount
of money. Your earnings will be communicated to you privately, and paid in cash at the end
of the experiment. During the experiment your earnings will be measured in points that will
become e at the end of the experiment using a rate of e1 for every 50 accumulated points,
plus a fixed amount of e3, as show-up fee for participating The corresponding amount in e
will be paid in cash at the end of the experiment. At the beginning of the experiment each of
you has been assigned a number. From now on, you and the rest of the participants will be
identified by that number. No communication is allowed among the participants during the
experiment. Any participant who does not comply will be invited to leave the experiment
without payment.

The market
The experiment consists of 15 periods of 3 minutes each. The market is composed of 15
participants connected to each other through a network. At the beginning of each period
you will be paired randomly with a subset of participants. At the beginning of each period
your initial portfolio consists of 10 units of the asset and 1000 ECU cash. Each participant
has the same initial portfolio. In each period, you and the other participants will have the
opportunity to buy and/or sell the asset only with those participants with whom you are
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connected. You can buy and sell as many units of the asset as you want, although each bid,
ask and transaction involves the exchange of a single unit. Therefore, the asset is exchanged
one unit at a time.

Information and dividends
At the end of each period, you will receive a given dividend for each unit of the asset you hold
in your portfolio. The value of the dividend can be 0 or 10 with the same probability. Thus,
without additional information, the value of the asset can be 0 or 10 with a probability
of 50%. You will receive additional information about the value of the dividend in the
form of signals. All market participants will receive at the beginning of each period public
information in the form of a public signal that will be correct with a probability of 80%, that
is:

• A public signal equal to 0 means that with a probability of 80% the final value of the
asset will be 0 at the end of the period.

• A public signal equal to 10 means that with a probability of 80% the final value of the
asset will be 10 at the end of the period.

Recall that the public signal will be the same for all market participants. Likewise, you will
receive private information about the value of the dividend at the end of the period in the
form of two independent signals.

• A private signal equal to 0 means that with a probability of 80% the value of the
dividend will be 0 at the end of the period.

• A private signal equal to 10 means that with a probability of 80% the value of the
dividend will be 10 at the end of the period.

This will be your private information and therefore you will be the only one able to see it.
At the end of each period, your profit will be the cash you have at the end of the period
plus the dividend for each unit of the asset you own minus the 1000 ECU that were given to
you at the beginning of the period. Your payment at the end of the experiment corresponds
to the accumulated profit in all periods. If at any time you have any question or problem,
do not hesitate to contact the experimentalist. Remember that it is important that you
understand correctly the operation of the market, since your earnings depend both on your
decisions and on the decisions of the other participants in your market.
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B5 Presentation for Subjects

The following are screenshots from the presentation for subjects in the experiments on how
to submit and/or accept bids or asks. The screenshots are for the MC and LC treatments
with public information. In the FC treatment, the number of traders that subjects could
trade with was not included, since the network was fully connected. The slides show, in turn,
(i) background information, (ii) how to submit a bid or ask, (iii) what happens if one of the
subject’s own bids gets accepted, (iv) how to accept a bid or ask, and (v) what happens if
the subject accepts a bid. If a subject tries to accept one of her own bids or asks, she receives
a message saying that it is not possible.
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Time (sec)Market
(normally out of 15)

Your asset 
holdingYour 

cash

Private signals

Public 
signal

Number of subjects
you can trade with

Background information

Bids (including 
yours), ordered

Asks (including 
yours), ordered

3
3.5

8
7



3. Your ask gets 
published here

2. Publish your ask

1. Write your ask

3. Your bid gets 
published here

1. Write your bid

2. Publish your bid

6

6

4

3
3.5

8
7

4

Steps for
publishing an ask (in green)

or a bid (in orange)



If somebody accepts
your bid of 4

5

3
3.5

8
6

1. Price of asset 
exchanged in your 

order book

4

2a. Your cash gets 
reduced by 4

2b. Your asset holding 
increases by 1



1. Select the ask you 
wish to accept

(e.g. 5)

2. Buy
2. Sell

1. Select the bid you 
wish to accept

(e.g. 3.5)

3
3.5
4

Steps for accepting somebody 
else’s bid (in orange) or

ask (in green)

5

8
6



1. Price of asset 
exchanged in your 

order book

3 3.5
4

8
6

1002.0

If you accept
somebody else’s bid of 3.5

2a. Your cash increases 
by 3.5

2b. Your asset holding 
is reduced by 1
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