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Abstract

This paper has two main objectives: rst, to provide a formal de nition of endogenous
systemic risk that is rmly grounded in equilibrium dynamics of temporary nancial
networks (i.e., short-term lending and investment networks); and second, to construct
a discounted stochastic game (DSG) model of the emergence of equilibrium network dy-
namics that fully takes into account the feedback between network structure, strategic
behavior, and risk. Based on our de nition of systemic risk we also propose a formal
de nition of tipping points. Using these tools we provide a strategic approach to making
global assessments of systemic risk in temporary nancial networks. Our approach is
based on three key facts: (1) the equilibrium dynamics which emerge from the game of
network formation generate nitely many disjoint basins of attraction as well as nitely
many ergodic measures (implying that, starting from any temporary nancial network,
in nite time with probability one, the dynamic sequence of networks arrives at one of
these basins, and once there, stays there), (2) each basin of attraction is homogenous with
respect to its default characteristics (meaning that if a basin contains networks having a
particular set of defaulted players, then all networks contained in this basin have the same
set of defaulted players), and (3) the unique pro le of basins generated by the equilibrium
dynamics carries with it a unique set of tipping points (special networks) - and these
tipping points provide an early warning of network failure.
Keywords: systemic risk, counter-party risk, nancial networks, supernetworks, tip-

ping points, default cascades, basins of attraction, Pareto optimal stationary Markov
equilibrium, rst passage probabilities, hitting times, hitting time probabilities.
JEL Classi cation: C7



1 Introduction

Since the nancial crisis of 2007-2008, we have come to realize that in order to correctly
assess the potential default risk present in any bilateral contractual relationship between
two rms, it is essential that we have a clear picture of the network structure of each
rm’s bilateral contractual connections to other rms. These network connections are the
channels or pathways over which, not only liquidity travels in moving through the network,
but also over which default contagion travels in moving through the network. Moreover, in
order to correctly assess the risk of a boarder network failure brought about by shocks to
individual rms or groups of rms, we must know something about the strategic behavior
of rms in responding to such shocks, as well as how the interplay between strategic
behavior and network structure generate the dynamics which drive network formation.
This “risk of a boarder network failure brought about by shocks to individual rms or
groups of rms” is usually referred to as systemic risk. While we know systemic risk
when we see it, surprisingly, we have no generally agreed upon formal de nition of it -
a fact pointed out by Glasserman and Young (2015) among others. This paper has two
objectives: rst, to provide a formal de nition of systemic risk that is rmly grounded
in the equilibrium dynamics of network formation; and second, to construct a discounted
stochastic game (DSG) model of the emergence of these equilibrium network dynamics that
fully takes into account the feedback between network structure, strategic behavior, and
risk. Given the rules of network formation, the preferences of individuals over networks,
and the environment of risk and uncertainty in which network formation takes place, it is
the interactions between strategic behavior and network structure under conditions of risk
that generate the equilibrium stochastic process of network formation. As a consequence,
it is the strategic underpinnings of this process which must be understood in order to fully
understand systemic risk (for a survey of the issues surrounding the notion of endogenous
systemic risk, see Zigrand, 2014).
In addition to providing an alternative way of thinking about systemic risk - including

a formal de nition of systemic risk and a game-theoretic model of the equilibrium dynam-
ics which generate systemic risk, we also provide a strategic approach to making global
assessments of systemic risk in networks. Three key facts about equilibrium network dy-
namics make our approach to systemic risk potentially very useful. First, the equilibrium
dynamics determined by our game-theoretic model of network formation uniquely parti-
tions the entire state space of state-network pairs into a transient set together with a nite
number of absorbing sets (i.e., basins of attraction) each consisting of state-network pairs
which persist through time.1 Moreover, these equilibrium state-network dynamics have
the property that no matter where the process of network formation begins, in nite time
with probability one, the process will enter one of these basins of attraction - and once
there, will stay there. Thus, here we provide at least the beginnings of a strategically-
based theory of long run prediction and risk assessment in nancial networks. Second,
each basin of attraction is homogenous with respect to its default characteristics - meaning
that if a basin contains a state-network pair having a particular set of defaulted players,
then all state-network pairs contained in this basin have the same set of defaulted players.
Thus, despite there being uncountably many state-network pairs, there are only nitely

1Letting denote the state at time , a state-network pair is given by

( ( ))

( ) is the network resulting from the strategic connection choices proposed by players in state . As the
state process probabilistically moves through the state space, the corresponding, state-dependent network
process moves through the space of networks. The Markov probabilities governing these movements are
functions of the current state and the network connection proposals made by the players. We will soon
ll in the details.
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many network default con gurations that can arise - and these default con gurations and
their probabilities of occurring can be computed. Third, each basin has a sphere of in-
uence. These are subsets of transient state-network pairs which in a probabilistic sense
belong to the basin in question - in that, if the process starts from a state-network pair
contained in a particular basin’s sphere of in uence, then in nite time with probability
one, the process will arrive at this basin and only this basin. Thus, if the basin in question
is one with very bad default characteristics (i.e., each network in the basin has a large
number of defaulted players), then each pathway from a state-network pair contained in
this basin’s sphere of in uence to the basin itself can be thought of as a default cascade.
Alternatively, if the basin in question is one with very good default characteristics (i.e.,
each network in the basin has a very few or no defaulted player), then each pathway from
a state-network pair in this basin’s sphere of in uence to the basin itself can be thought
of as a default extinguishing path - or as a path along which the equilibrium network dy-
namics are such that default is self-limiting. Moreover, at the boundary of these spheres
of in uence are the tipping point state-network pairs.
A useful visualization devise for understanding of our approach to systemic risk is to

think of the equilibrium (state) dynamics as being represented by a supernetwork where
the nodes are the possible states and the directed arcs pointing from one state to another
are labeled by the equilibrium transition probabilities of the network moving from one
state to another. These equilibrium transition probabilities are a function of the pro le
of players’ network formation strategies. By way of a useful analogy, if we then think of
this supernetwork as representing the “transportation network” over which the network
will travel in moving from one state to another, we can then compute the probabilities
that the current network, departing from its current state (perhaps one with no defaulted
players), arrives at any other state or set of states (having defaulted players) at or before
a particular time. With our transportation analogy in mind, we are led to de ne the
systemic risk of the current network as the rst passage probability to some future state or
set of states identi ed as having a particular subset of defaulted players. The “time” with
respect to which our rst passage probabilities are computed can be given by a particular
time point, by an interval of time, or by all nite times. We then have for each possible
current network in a particular state a schedule of systemic risk measures indexed by
times and states (and subsets of states). Under our approach, systemic risk is better
thought of as a transportation (to default) schedule, relevant to the current network in
its current state (a state from which the network will depart), giving the probabilistic
arrival times of the network at various failed states or subsets of failed states (where
failure is characterized by a particular subset of defaulted players chosen by the observer
who is seeking to measure systemic risk). Under our de nition of systemic risk (as a
rst passage probability), systemic risk is inextricably linked to the equilibrium network
dynamics determined by the interplay between strategic behavior, network structure, and
risk. Moreover, by its very de nition, our notion of systemic risk takes into account the
timing and severity of the risks being measured.
The presence of nitely many basins of attraction, each consisting of states having a

particular subset of defaulted players, together with the fact that the current network -
no matter what its current state - will arrive at one of these basins (i.e., will arrive at
some state contained in one of these basins) in nite time with probability one, has major
implications for our understanding of how best to measure and control systemic risk.
Moreover, the presence of a unique set of spheres of in uence, serving as an early warning
system for impending defaults, enhances our ability to guide the network formation process
toward less systemically risky states by providing a set of navigation beacons (keeping
in mind our transportation analogy). The big picture take away from our approach to
systemic risk is that what really matters in assessing the potential severity of the systemic
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risk of a network is the distribution of the defaulted players across nitely many basins
of attraction. In fact, if in the collection of basins of attraction there is a basin with no
defaulted players, while all other basins contain only a few defaulted players, then we could
describe the network formation process as being resilient because with positive probability
it endogenously limits default. This raises an interesting question: is there a way, using
smartly designed policies, that we can guarantee that the equilibrium stochastic process
of network formation is resilient? While we do not take up a detailed analysis of this
question here, our game-theoretic model and our de nition of systemic risk provide the
tools with which such an investigation can be carried out.
Here, in developing our de nition of systemic risk, we will focus on short-term lend-

ing and investment networks - saving for future work the much more di cult problem
of analyzing of the interconnections of systemic risk (as de ned here) and the maturity
structure of lending and investments. We will refer to our short-term lending and invest-
ment networks as temporary nancial networks. In the discounted stochastic game model
of temporary nancial network formation constructed here, each of players forms two
networks: (i) one consisting of short-term borrowing or lending connections with the other
players, and (ii) one consisting of investment connections with some subset of possible
(perfectly divisible) risky investment projects. Players borrow or lend short term in order
to adjust their levels of investable funds available for the risky projects. The formation
of the borrowing and lending network takes place in two steps. First, each player, , pro-
poses a pro le of borrowing or lending contracts to the other players. Each such proposed
contract, for example one from player to player , is speci ed by a proposed amount
0 to be borrowed ( 0) or lent ( 0) at the beginning of the period and a proposed

amount 1 to be repaid at the end of the period. Player 0 contract proposal, ( 0 1 ),
to becomes a real connection between and in the borrowing and lending network
if - given 0 proposal, ( 0 1 ) - 0 counter-proposal, ( 0 1 ), to is matching - that
is, if + = 0 for = 0 and 1. If player pair ’s contract proposals fail to match,
then a matching is reached through bargaining between players and . Here, rather
than model this bargaining process explicitly, we instead assume that there is a matching
function which incentivizies players to reach a matching in borrowing or lending propos-
als. Once players have reached borrowing and lending matches (thereby determining their
borrowing-lending network and their levels of investable funds), players choose an alloca-
tion of their investable funds across the risky investment projects. If as a result of prior
investment, borrowing and lending activity, a player begins the period with insu cient
cash, then during the coming period, the player is allowed to try to borrow su cient funds
to continue (i.e., to bring his investable funds level to a positive amount). Failing this,
at the beginning of the next period the player becomes a permanent member of the set
of defaulted players - and remains inactive in perpetuity. In order to take into account
the unintended network-wide, negative cash ow consequences of a player’s (or players’)
default, we adjust players’ debt repayments to re ect the actual debt repayments players
are able to make after a default. Here, using the Eisenberg-Noe (2001) approach, we ob-
tain a stationary default adjustment function which allows us to compute the equilibrium
default adjusted repayments. Moreover, using our stationary default adjusted repayments
function, we are able to compute the equilibrium, default adjusted, short-term lending
rate process.
We will proceed according to the following outline:

2. Temporary Financial Networks

2.1 The State Space

2.2 Short-Term Lending Networks
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2.2.1 Borrowing, Lending, and Default

2.2.2 Matching

2.3 Short-Term Investment Networks

2.4 From Network Proposals to Networks

2.5 Networks, Cash Flows, and Contract Resolution

2.5.1 Cash Flows without Regard to Contract Resolution

2.5.2 Contract Resolution

2.5.3 Payment Vectors and Clearing Equilibrium

2.5.4 Player’s Cash Flows, Contract Resolution, and Player Default

2.6 The Cash Flow Transition Function

2.7 The Short-Term Lending Rate Process

3. A De nition of Systemic Risk

3.1 Some Classical Notions from the Theory of Markov Chains

3.2 A De nition of Systemic Risk Based on the Dynamics of Temporary Financial Net-
works

3.3 The Dynamics of Systemic Risk: Basins and Their Spheres of In uence

3.4 Tipping Points, Systemic, and Very Systemic Players

4. The Strategic Foundations of Systemic Risk

4.1 Primitives and Assumptions

4.2 Comments on the Primitives and Assumptions

4.2.1 Player Valuation Functions

4.2.2 Continuity Properties

4.2.3 The Default and Matching Adjusted Cash Flow Transition Function

4.3 Pareto Optimal Matching and Pure Strategy Nash Equilibria

5. Stationary Markov Equilibrium in Network Formation Strategies
6. Stability Properties of the Dynamics of Temporary Financial Networks

6.1 Absorbing Sets and Invariant and Ergodic Probability Measures

6.2 Visitation Times

6.3 Recurrence, Transience, and Irreducibility

6.4 Dynamic Basins of Attraction: Maximal Harris Sets

6.5 The Fundamental Conditions for Stability: Drift and Global Uniform Countable
Additivity

7. Basins of Attraction, Invariance, and Ergodicity
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2 Temporary Financial Networks

We consider the problem faced by a set of players who at the beginning of each period [ +
1] (at time ), after observing the state, := ( ), and therefore after observing the
cash ow levels, , available for the coming period, form a nancial network of investment
connections, as well as borrowing-lending-repayment connections. The payo s generated
by forming such networks are risky. This is because these payo s are largely determined
- not by the current state - but by the coming state. As to which coming state will occur,
players only know the conditional probabilities - hence the risk. Moreover, the conditional
probabilities governing the occurrence of upcoming states are largely determined by the
strategic interactions of the players in forming networks. Our objective here is to provide
a game-theoretic model of these strategic interactions, and more importantly, to provide
an understanding of how these interactions determine the equilibrium state dynamics and
therefore the risks inherent in these dynamics.
We will assume that the set of players is given by := {1 2 }, with typical

elements and .

2.1 The State Space

The states about which players are uncertainty reside in the set with typical element,
= ( ), consisting of the -tuple of player cash ows, := ( 1 ) ,

where := [ ], 0, the subset of defaulted players, 2 , where 2 is the
collection of all subsets of including the empty set, and the state of the real economy

, where is a complete, separable metric space with metric . Thus, the set of
states is given by

:= × 2 × .

We will equip with the product - eld,

:= × 22 × ,

where is the Borel product - eld in , 22 is the set of all subsets of 2 , and
is the Borel - eld in . Finally, we will equip := × 2 × with the product

probability measure,
:= × × .

Thus, the state space is given by the probability space

( ) = ( × 2 ×| {z }
states

× 22 ×| {z }
events

× ×| {z }
probabilities

). (1)

If at time the state is

= ( ) = × 2 × . (2)

then player 0 available cash for the coming period, [ + 1], is

( ) := ( ) = (3)

the set of players who are in default during the coming period, [ + 1], is

( ) := 2 ( ) = 2 (4)

and the state of the real economy during the coming period, [ + 1], is

( ) := ( ) = (5)

(Here (·)(·) is the usual projection function).
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2.2 Short-Term Lending Networks

Each non-defaulted player, \ , at the beginning of period [ + 1], :=
{0 1 2 }, after observing the state and learning his cash ow, , proposes two
new -tuples of borrowing-lending-repayment amounts, := ( 0 1 ) - in this way, the
player can augment his current cash ow to obtain the desired level of investable funds.
This proposed pair of -tuples potentially represents player ’s part of the loanable funds
network for the coming period (i.e., [ + 1]). The rst -tuple,

0 := ( 01
0
2

0 ) (6)

is player ’s borrowing and lending proposals to all other players. The second -tuple,

1 := ( 11
1
2

1 ) (7)

is player ’s repayment proposals to all other players. Recall, is the closed bounded
interval [ ], 0, with := [ 0] and ++ := (0 ] and

:= × · · · ×| {z }
n times

.

The the components, ( 0 1 ), of each of the two -tuples, ( 0 1 ) × ,
speci es the bilateral borrowing or lending contract proposed by player to player . If
the components, ( 0 1 ) of each of the two -tuples, ( 0 1 ), are such that

0 0 and 1 0 (8)

then player is proposing to borrow an amount 0 0 from player and pay back an

amount 1 0 to player at the end of the period. If the components, ( 0 1 ) of

each of the two -tuples, ( 0 1 ), are such that

0 0 and 1 0 (9)

then player is proposing to lend an amount 0 0 to player at the beginning of the

period and to be paid back an amount 1 0 by player at the end of the period.

2.2.1 Borrowing, Lending, and Default

Given player ’s cash ow, , at time point (the beginning of period [ + 1]), player
’s borrowing-lending-repayment proposals, ( 0 1 ) × , must be such that if

0, then 0 := ( 01
0
2

0 ) (i.e., 0 for all ). Thus, if
at time point player 0 cash ow level is nonpositive, then player is constrained to
make only borrowing proposals (i.e., player is constrained to try to augment his cash
ow enough via borrowing so that his level of investable funds is positive) - but even
under this constraint there are three possible proposal decisions player can make: (1)
player can choose to permanently enter the set of defaulted players at + 1 by choosing
at to make no borrowing proposal (by choosing 0 = 0), (2) player can choose to
make a borrowing proposal, 0 0 for all , but one that is insu cient in thatP

0 := 0
®

0, or (3) player can choose to make a borrowing

proposal, 0 0 for all , such that 0
®

0. The rst two decisions will
result in player qualifying for permanent membership in the set of defaulted players
starting at time point + 1. Thus, if for player 0 and player chooses a network
proposal, ( ( ) 0 ( ) 1 ( )) ( ) × × , at time point in state such
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that 0 ( )
®

0, then in the coming state, +1 := ( +1 +1 +1), at time
point + 1, player will be a new member of the set of defaulted players, +1 (note that

) - and will remain a member for all 0 +1. These observations provide us with
a way to identify those players who are prime candidates for permanent membership in
the set of defaulted players. In particular, in state , the set of players who qualify for
permanent membership in the set of defaulted players is given by,

( ) :=
©

: ( ) := 0 and 0 ( )
®

0
ª

(10)

Conversely, for player the set of states in which player quali es for permanent mem-
bership in the set of defaulted players is

( ) :=
©

: ( ) := 0 and 0 ( )
®

0
ª
. (11)

Thus, if at time in state , ( ), then at time + 1, +1. Moreover, if is
the rst time that ( ), then at time + 1, +1 and for all future time points,
0 + 1, 0 . We will return to our discussion of default below when we discuss the
equilibrium state process and introduce our discounted stochastic game model of nancial
network formation - the game from which these dynamics emerge.
At time point , each player \ faces a borrowing-lending constraint correspon-

dence, B( ), for borrowing and lending proposals de ned on the player ’s cash
ow levels, . For each possible level of cash ows, , the set of feasible
borrowing and lending proposals, B( ), is given by

B( ) := [ 0]( ) + [ 0]( ), (12)

where [ 0](·) and [ 0](·) are indicator functions for the intervals [ 0] and [
0], respectively.
Viewing each player’s borrowing-lending-repayment proposal, ( 0 1 ), as row vectors,

we can use these row vectors, one pair from each player, to form two × matrices, 0

and 1, with the -tuple forming the row of the matrix , = 0 1. Together the
matrices,

( 0 1) := ( 0 1 ) (13)

with feasible rows ( 0 1 ) B( )× , each represent a player’s loanable funds network
proposal. In matrix form, we indicate that a loanable funds network proposal pro le,

( 0 1) := ( 0 1 ) := ([ 0 ] 2 [ 1 ] 2)

is feasible by writing ( 0 1) A( ), where

A( ) :=
£
B( 1)× · · · × B( )

¤× £G1 × · · · ×G ¤
:= B( )×G, (14)

where
G := { 1 = ( 11 1 ) : , 1 } (15)

2.2.2 Matching

In order for a feasible proposed network to become a network, it must be bilaterally
consistent or matching. A feasible loanable funds network proposal by players,

( 0 1) := ([ 0 ] 2 [ 1 ] 2) A( ) (16)

is matching if for each player pair, ,

+ = 0 for = 0 1.
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Thus, if for player pair, , the borrowing or lending proposed by player to player
is consistent with that proposed by player to player , then 0 B( ) is matching,
and if for player pair , the payments or repayments proposed by player to player
is consistent with that proposed by player to player , then 1 is matching. In matrix
form (with rows representing player proposals), the set of matching matrices is given by

M := { := [ ] 2 G : , + = 0} (17)

Note that M ( = 0 or 1) if and only if = [ ] (i.e., is equal to the negative
of its transpose).

[A-1] (How Proposed Networks Become Networks)
If the proposed loanable funds network, ( 0 1), is feasible and matching, that is, if
proposal ( 0 1) is contained in A( ) and if 0 M and 1 M, then ( 0 1) moves
from being the proposed loanable funds network to being the loanable funds network in
force. The collection of all feasible, matching loanable funds networks is given by

AM( ) := (B( ) M)×M (18)

Note that the set of feasible network proposals, A( ) := B( ) × G, is a compact
convex subset of G×G. More importantly, note that the set of feasible matching network
proposals AM( ) := (B( ) M)×M is a closed convex subset of A( ). If a feasible
network proposal, := ( 0 1) A( ), is not matching, so that AM( ), then the
move from the proposed network A( ) to a feasible, matching network 0 AM( )
is brought about by discussion, bargaining, and compromise. Here we will not explicitly
model the bargaining process. Instead, we will assume that the outcome of the bargaining
process is given by a state-dependent matching function. We will return to our matching
outcome function once we have introduced the notion of an investments network.

2.3 Short-Term Investments Networks

Each player’s cash in ow at the end of each period is generated by the returns on a
portfolio of risky project investments made at the beginning of the period. Thus, at
the beginning of each period, each player chooses an allocation of his investable funds,©

0 ( )
®
0
ª
, across a nite set of risky projects. We have the the following

notation and assumptions:

[A-2] (Short-Term Investments Networks)
= {0 1 2 } the index set for investment projects.

( ) = the set of all probability measures, = ( 0 1 ) on , i.e.,
:= ( ) such that , [0 1] and

P
= 1.

= the random one-period return per dollar invested in project
:= {0 1 2 }.

= the amount of cash available to player (without borrowing).
= the player’s portfolio weights, := ( ) ( ) where is the fraction

of investable funds allocated by player to project .
= ( 0 1 ) R is the random vector of risky project returns per dollar invested.

Viewing each player’s portfolio weights,

:= ( 0 1 ) ( ), (19)
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as a row vector, we can put together these row vectors to form an × (stochastic)
matrix , given by

:=

10

...

0

...

0

11 · · · 1 · · · 1

...
...

...

1 · · · · · ·
...

...
...

1 · · · · · ·

(20)

with row and column representations given by

:=

· · · 1 · · ·
...

· · · · · ·
...

· · · · · ·| {z }
row representation

:=

...

0

...

...
...

...

1 · · · · · ·
...

...
...| {z }

column representation

(21)

The row, , of matrix is player 0 portfolio allocation. The column, , is
the allocation across players of the return generated by project . Given the vector,
:= ( 1 ), of players’ cash ows, the vector of project returns, , and the matrix

of portfolio allocations, we can compute the end of period cash ow to each player.2 In
particular, we have

1
®

1

...®

...
h i

=

1 · · · 0 · · · 0
...

. . .
...

...
0 · · · · · · 0
...

...
. . .

...
0 · · · 0 · · ·

· · · 1 · · ·
...

· · · · · ·

· · · · · ·

0

1

...

(22)
where

®
is player ’s end of period cash in ow generated by investing dollars

at the beginning of the period in risky projects allocated across the projects according to
the allocation vector, .
We can think of each player’s project portfolio formation problem as a club network

formation problem in which each project, , represents a club, and each connection from
a player to a particular club, , looks like the following:

Figure 1: Player joins club

and invests dollars in club-

Using the language of networks, if player ´ forms club network ( ) and operates
his club network at intensity level , then player allocates fraction of his total
intensity to club . Thus, if realized project returns are := ( 1 ), player 0 payo
is

®
. This amount, together with loan repayments on loans made by player to

2For the moment we will simply assume players invest all of their cash ows in projects.
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other players at the beginning of the period, are the only sources of player ’s end of
period cash in ows. Because these sources of cash ow are risky, there is always some
probability that these cash in ows will be insu cient to cover player ’s end of period
contractual loan repayment obligations. These cash out ow obligations are the result of
loans gotten by player (i.e., borrowing by ) from other players at the beginning of the
period. In order to complete our network model, we must specify how these contractual
obligations are resolved in the event that some player has insu cient funds. We will begin
by modelling the process generating these risky cash ows. Our ultimate objective will be
to model the origins of this risk generating process in the strategic behavior of the players
in forming nancial networks.

2.4 From Network Proposals to Networks

At the beginning of each period [ + 1], players observe the state, , and therefore
players know their cash ow levels, , and based on this knowledge non-defaulted players,

\ , propose a feasible network,

(( ) ( 0 ) ( 1 ) ) ( )× B( )×G (23)

while each defaulted player, , has zero investable cash (i.e., max{ 0} = 0) and
proposes the zero network, ( 0 0 0), where portfolio 0 := (1 0 0), requires that
defaulted player invest all of his investable funds, max{ 0}, in project 0. In matrix
form, players’ proposed networks are given by a 3-tuple of matrices

:= ( ) := ( ( 0 1)) P( ) := ( ) ×A( ) (24)

In order for the network proposed by the players to become the network in force during
the coming period, the feasible loanable funds network proposal,

:= ( 0 1) A( ) (25)

must be feasible and matching, that is, ( 0 1) must be contained in AM( ) (see as-
sumptions [A-1])
If the feasible proposed network, := ( ), is not matching, then players at the

beginning of the period must bargain their way to a feasible and matching network whose
representing matrix, ( 0 0), has rows such that

0 := ( 0 00 01 ) G( ) := ( ) ×AM( ). (26)

Here we will not model this bargaining process explicitly. Instead, we will assume that,
given the -tuple of cash ows, , the outcome of the bargaining process is given by a of
function,

( ·) : P( ) G( ) for

In Gong and Page (2016), for each ( ) ×P( ) the matching function, ( )
( ), is given by

( ) :=

½
0 := ( 0 0 0) if G( )
:= ( 0 1) if G( )

(27)

Here, the (0 0) in the pair, ( 0 0 0) ( ) ×G( ), is a pair of zero matrices - indicating
that no borrowing or lending (and therefore no repayments) are being proposed or put in
force. Also, 0 is the investments matrix where each row is given by 0 := (1 0 0),
indicating that each player invests all of his (positive) investable funds, max{ 0}, in

10



project 0. Note that ( 0 0 0) ( ) × G( ) for all - i.e., ( 0 0 0) is feasible and
matching at all investable funds levels - including the zero vector of investable funds.
We will often write ( ) rather than ( 0 1) - and sometimes will simply write
rather than ( ) and 0 rather than ( 0 0 0), and we will often refer to 0 as the
zero network. Finally, we will call the matching function, (· ·), in expression (27) the
-matching function. We have the following formal de nition:

De nition 1 (The -Matching Function)
The -matching function, ( ) ( ), with domain × P( ), taking value in
the space of feasible and matching networks, G( ), is given by

( ) ( ) :=

½
0 := ( 0 0 0) if G( )
:= ( 0 1) if G( )

The intuition behind the -matching function is that if players fail to make matching
proposals, then under the -matching function players operate during the coming period
under the consolation network, 0. While 0 is a feasible and matching network, there
is in each state some feasible and matching network, G( ), that Pareto dominates

0 (see assumption [A-5] below). Thus, in equilibrium players are incentivized (via the
-matching function) to arrive at a feasible and matching network other than 0. In
this sense, the -matching function acts as a penalty function that incentivizes players to
propose feasible and matching networks.
The -matching function can be rewritten compactly as follows: for all P( )

proposed by players

( ) := G( )( ) + 0(1 G( )( )) G( ) (28)

where G( )(·) is the indicator function for the set of a ordable and matching networks.

[A-3] (Matching Outcomes are Determined by the -Matching Function)
In all cash ow states , we will assume that for all feasible network proposals,

P( ), the corresponding feasible and matching network is given by the value taken
by the -matching function,

( ) :=

½
0 := ( 0 0 0) if G( )
:= ( 0 1) if G( )

(29)

Note that for all ( ) × ( ( ) ×G×G), if G( ), then under the
-matching function, all borrowing and lending stops and for the coming period players
must invest all of their funds in the riskless project, that is,

( ) = 0 G( )

However, if ( ) G( ), then

( ) = G( ).

Thus, because the zero network, 0 is contained in G( ) for all , we have

( P( )) = ( G( )) (30)

Also note that in each cash ow state, , the set of feasible network proposals
(matrices in this case), P( ), is a compact convex subset of ( +1

+ ) × ( ) × ( ) ,

11



and more importantly, note that for all the set of all feasible and matching network
proposals, G( ), is a closed convex subset of P( ). Thus, we have for all ,

G( ) P( ) ( +1
+ ) × ( ) × ( ) .

Under the -matching function, we have

G( ) = ( P( )) P( ), (31)

with
( ) = 0 (32)

for all feasible but not matching network proposals, = P( )\G( ).

2.5 Networks, Cash Flows, and Contract Resolution

In this subsection, we will work out the end-of-period (i.e., short-term) cash ow conse-
quences of the network chosen by the players given the cash available at the beginning of
the period.

2.5.1 Cash Flows Without Regard to Contract Resolution

Given players’ cash ow, 1, at time 1, if the prevailing feasible and matching network
during period [ 1 ], is = ( ), and if the realized state at time point is , then
players’ vector of cash ows, , at the beginning of period + 1 (at time ) is given by

:=

investable fundsz }| {
max [ 1

net borrowing and lending at 1z}|{
0 ] 0

| {z }
return at in state from portfolio of projects invested in at 1

1|{z} ,
net repayments from borrowing and lending at 1

(33)

where the levels of investable funds at time 1 are given by the vector,

max
n
[ 1

0 ] 0
o

:=
³
[ 1

0 ] 0
´

:=
¡
max

©
[ 1

0
®
] 0
ª¢

:=
¡
max

©
[ 1

1
01

®
] 0
ª

max
©
[ 1

0
®
] 0
ª¢

(34)

Thus, if the state at the beginning of period + 1 is (at time ) and if all players
meet their loan repayment obligations, then players know their cash ows for the coming
period and can compute their investable funds for the coming period corresponding to
any borrowing-lending proposal they might make. If, with this knowledge, players form
the network,

( ) := ( ( ) ( )) G( )
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for the coming period, period + 1, then their network decisions, ( ), in force during
period +1 together with their cash ows, , the state of the real economy, , the set of
defaulted players, , and the realized return on projects determine the cash ow, +1,
available at the beginning of period +2 (at time +1). In order for a player to participate
in the network formation process, the player must have available at the beginning of the
period a positive (or at least nonnegative) level of investable funds. If this is not the case
for some player, say player then that player must be able to borrow enough funds at
the beginning of the period to meet his contractual repayment obligations. Failing this,
the player defaults and remains a defaulted player in perpetuity. Speci cally, if at time
the realized state is such that given the network formation decisions of the players
at time 1, player 0 cash ow, , going forward into period + 1, is nonpositive
(i.e., 0), then player , in order to continue playing the game of network formation
and avoid becoming a defaulted player at time + 1, must be able to borrow su cient
funds to bring his investable funds level to a nonnegative amount - otherwise, the player
defaults. Thus, if player at time in state has cash ow, 0 then player
must propose a loanable funds network, ( 0 ( ) 1 ( )), such thatD

( 1)
E³
[ 1

D
0 ( 1)

E
] 0
´ D

1 ( 1)
E

| {z }
D
0 ( )

E
0

If this is not possible - if player fails to borrow his way back to solvency because no other
players will take the lending side of his borrowing proposals, ( ) := ( 0 ( ) 1 ( )),
(i.e., if player is unable to nd lenders willing to supply the needed funds), or if player
is unwilling to make such a borrowing proposal, then player will become a permanent
member of the defaulted players club (starting at time + 1 - i.e., the player has one
period to make good on his debt obligations). By the constraint mapping, B( ),
a player whose cash ow is negative is constrained to only make borrowing proposals or
no proposals at all.

2.5.2 Contract Resolution

The problem above is even a bit more subtle than what we have described. In particular,
if a player has insu cient funds to meet his contractual repayment obligations, this may
have the unintended consequence of causing other players to have insu cient funds to
meet their repayment obligations. In this subsection we will work out, using the results
of Eisenberg and Noe (2001), precisely what players are able to repay whenever some
player cannot meet his contractual repayment obligations. In fact, the Eisenberg and Noe
approach will provide us with a stationary allocation rule for the resolution of contractual
default issues - and thus, will allow us to calculate an accurate measure of the cash ow
externalities caused by a player’s insolvency as well as give us a accurate read concerning
how much a player must borrow in order to get back to solvency.
We begin by rewriting the fundamental cash ow transition equation (33) by re-

representing the contractual repayments matrix, 1, using a liabilities allocation matrix
(as in Eisenberg and Noe, 2001) together with the contractual repayments vector. Thus
decomposing the repayment matrix 1 into in ows and out ows. Let

=
max{ 1 0}P
max{ 1 0}| {z }

fraction player 0 liabilities owed to player (from i to j)

(35)
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Consider the liabilities allocation matrix,

:=

11 · · · 1 · · · 1

...
...

...

1 · · · · · ·
...

...
...

1 · · · · · ·

(36)

with column and row . Note that for any state , the liabilities allocation
matrix, , is matching, i.e., M. Letting

:=
X

max{ 1 0} (37)

is the total contractual loan repayment amount by player to all other players. Finally,
let,

:= ( 1 ) (38)

be the vector of total contractually speci ed loan repayment amounts by each of the
players.
If all players have su cient funds to cover their contractual loan repayment obligations,

then player will receive an amount given by

h i (39)

from all other players to which player loaned money at the beginning of the period at
time 1. Thus, if all players are solvent, the vector of repayments from players who
were loaned funds at 1 to players who did the lending, is given by

=

h 1i
...

h i
...

h i

. (40)

Under network ( ) if all players remain solvent, players’ cash ow vector in
state is given by

:=
¡
[ 1

0 ] 0
¢

1

:= [ 1
0 ] + | {z }

1

Thus, the fundamental cash ow transition equation (with no insolvency) becomes

|{z}
players’ cash ows at

:=
¡
[ 1

0 ] 0
¢| {z }

cash in ow to from returns on portfolio

+ | {z }
loan repayments received

|{z}
loan repayments paid out

(41)
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2.5.3 Payment Vectors and Clearing Equilibrium

Under the assumptions of absolute priority and limited liability in contract resolution,
we can apply Eisenberg and Noe (2001) to calculate a vector whose components are the
amounts each player is able to pay (prior to additional borrowing) - thus giving us the
true amount of the shortfall that must be made up by an insolvent player in order to avoid
default. We call this new vector of repayments, , the clearing vector. Because our dy-
namic model of network formation is stationary (i.e., the primitives are time independent),
using results in Eisenberg and Noe (2001), we will be able to write our clearing vector,
, as a stationary (i.e., time invariant) continuous function of the underlying parameters
and player choices: project returns, , contractually speci ed repayment obligations,
(a continuous function of 1), cash ows, , investment club networks , and loanable
funds networks, 0 and 1 (i.e., 1 and ). Thus, ex ante, realizable repayments are
given by a parameterized set of functions given by,

{ (· ) : G( )} ,
where for each network = ( 0 1) G( ), the vector-valued function,
( ), is a jointly continuous function of ( ). In particular, following Eisen-
berg and Noe (2001), we say that a payment vector - given project returns (at + 1)
cash ow levels (or cash at ), , and network = ( 0 1) (formed at and in force
during period [ + 1] - is a clearing equilibrium provided

= min{ ¡
[ 0 ] 0

¢
+ }

:=
¡ ¡

[ 0 ] 0
¢
+

¢
:= (

¡
[ 0 ] 0

¢
+ ).3

Thus, is a xed point of the vector function,

(
¡
[ 0 ] 0

¢
+ ) : [0 +] [0 +].

Given ( ) := ( ( 0 1)) is a clearing equilibrium if and only if

=
¡
[ 0 ] 0

¢
+ .

Moreover, given cash ow-network pair, ( ), ( ) is a clearing equilibrium for
any return vector realized at the end of any period in which the cash ow vector at the
beginning of the period is and the network in force during the period is Thus, we
have

( ) = (
¡
[ 0 ] 0

¢
+ ( ) )

It follows from Eisenberg and Noe (2001) that for each ( ( )) R × G(·) a
clearing equilibrium exists and is unique provided the

project returns are strictly positive with probability 1.

Thus, while project returns may be arbitrarily low, they must be positive with probability
1.
Let ( ( )) denote the unique clearing equilibrium payment vector given ( ( )).

It follows from Eisenberg and Noe (2001) that the clearing equilibrium payment function,
(· (· ·)), is jointly continuous in ( ( )), and that each of the functions,

( ( )) and ( ( )),

3Both the matrix. , and the vector, , are functions of the repayment matrix, 1 (see expressions,
(35) and (36)).
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is concave, increasing and nonexpansive, separately. Thus, (· ( )) is concave, increas-
ing, and nonexpansive in project returns, , for each ( ), and ( (· )) is concave,
increasing, and nonexpansive in cash ow levels, , for each ( ).
The new adjusted fundamental cash ow transition equation (allowing insolvency) is

+1| {z }
players’ cash ows at +1

:= +1

¡
[ 0 ] 0

¢| {z }
cash in ow to from returns on portfolio

+ ( +1 )| {z }
adjusted loan repayments received

( +1 )| {z }
adjusted loan repayments paid out

(42)

2.5.4 Player’s Cash Flows, Contract Resolution, and Player Default

From the new adjusted fundamental cash ow transition equation (42), we obtain for each
player a new adjusted fundamental equation for cash ows given by

+1| {z }
0 cash ow at +1

:= +1

® ¡
[ 0

®
] 0

¢| {z }
cash in ow to from returns on portfolio

+ ( +1 )
®| {z }

adjusted loan repayments received

( +1 )| {z }
adjusted loan repayments paid out

(43)

In order for the network formation process to work, the investable funds, 0
®
,

available to each player, , at the beginning of each period, [ +1], must be nonnegative.
If this is not the case for some player, that player must be able to borrow enough funds
at the beginning of the period to make up the short fall in investable funds. Speci cally,
if at time the realized state is such that given the network formation decisions of the
players at time 1, some player’s level of cash ow, going forward into period + 1, is
negative, then this player, say player , in order to continue playing the game of network
formation and avoid becoming a defaulted player, must be able to borrow su cient funds
to bring his investable funds level to a nonnegative amount - otherwise the player defaults.
Thus, if player at time + 1 in state +1 has investable funds, +1 0 then player

must propose a loanable funds network, ( 0 ( +1)
1 ( +1)) , such thath

+1

D
0 ( +1)

Ei
0 (44)

where +1 is given by expression (43). If player
0 e orts to borrow his way back to

solvency fail - if player is unable to nd lenders willing to supply the needed funds (i.e.,
the amount 0 ( +1)

®
in expression 44), then player will become a permanent

member of the defaulted players club.

2.6 The Cash Flow Transition Function

At any time cash ows at + 1 +1, are a function of current cash ows, , players’s
current actions, := ( 0 1), the stationary default adjustment function, (· · ·),
and risky project returns at + 1, +1. Thus, rewriting expression (43) as an abstract
vector function we have

+1 = ( +1). (45)
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If the current state is := ( ), then player 0 immediate expected payo is

( ) :=

Z
R

( ( +1)) ( +1| ), (46)

where ©
( +1| ) : ( ) 2 × ª

(47)

is the collection of product measurable probability density functions describing the random
behavior of project returns as a function of the state of the real economy and the set of
defaulted players.

2.7 The Short-Term Lending Rate Process

Consider the network formation process,

{ ( )} := { ( ) 0( ) 1( )} , (48)

with underlying equilibrium state process,

{ } := {( )} (49)

governed by the equilibrium Markov transition kernel, ( +1| ). For the equilibrium
borrowing-lending-repayment network formation process, { ( )} := { 0( ) 1( )} ,
the short-term nominal lending rate process, {[ ( )] } , is given by,

( ) :=
1 ( )
0 ( )

1, (50)

where for all and , 0 ( ) is the amount of the loan from player to player , and
1 ( ) is the nominal loan repayment amount from player to player .
The equilibrium borrowing-lending-repayment network formation process,

{ 0( ) 1( )}
induces an equilibrium default adjustment process given by,

{ ( +1 ( ) ( ))} := { 1( +1 ( ) ( )) ( +1 ( ) ( ))} . (51)

Given the equilibrium processes, { ( )} and { ( +1 ( ) ( ))} , the induced
equilibrium short-term, default-adjusted lending rate process, {[ - ( )] } , is given
by,

- ( ) :=
( )[

R
R ( +1 ( ) ( )) ( +1| )]

0 ( )
1, (52)

where for all and , ( ) is the fraction of player 0 short-term liabilities owed to
player , and

R
R ( +1 ( ) ( )) ( +1| ) is the expected default adjustment

at in state := ( ). In the case of no defaulted players (i.e., ( ) = ),
the equilibrium short-term, default-adjusted lending rate process, {[ - ( )] } , is
equal to the short-term nominal lending rate process, {[ ( )] } . Thus, we have,

- ( ) :=
1 ( )
0 ( )

1. (53)

In general, the equilibrium default risk premium is given by

- ( ) :=
1 ( ) ( )[

R
R ( +1 ( ) ( )) ( +1| )]

0 ( )
. (54)
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3 A De nition of Systemic Risk

For the convenience of the reader, we begin with a brief summary of some of the classical
notions from the theory of Markov chains needed for the discussion of the stability prop-
erties of network dynamics (see also, Gong, Page, and Wooders, 2015). These classical
notions will help us greatly in coming to deeper understanding of the dynamic behavior
of systemic risk and its origins in the strategic behavior of the players in the game of
temporary nancial network formation. In the next section we present our discounted
stochastic game model of temporary nancial network formation - thereby o ering our
view of the strategic foundations of systemic risk.

3.1 Some Classical Notions from the Theory of Markov Chains

Let,
{ } := {( )}

be the equilibrium state process governed by the equilibrium Markov transition kernel,
( +1| ). The -step transition (·|·) is de ned recursively as follows: for all :=

( ) and ,

( | ) =
Z

( | 0) 1( 0| ) =
Z

1( | 0) ( 0| ) (55)

for = 1 2 , and 0(·| ) = (·) is the Dirac measure at .
Also, for now we will assume that the equilibrium Markov transition kernel, (·|·),

is uniformly countably additive on the entire state space (we will formally establish this
fact below). This implies, via results due to Tweedie (2001), that the state space is
decomposable into nitely many basins of attraction (i.e., largest absorbing sets),

A := { 1 2 },
and a transient set . Thus, because (·|·) is globally uniformly countably additive on
all of , we can write,

=
£

=1

¤
.

This decomposition of the state space is usually called (in Markov chain theory) a Harris
decomposition.
For the state process { } =1 = {( )} =1, the hitting time (or rst passage

time) to
:=
£

=1

¤
(or for that matter the hitting time to any set ) is given by

:= inf { 1 : } . (56)

Following Tweedie (2001) and Meyn and Tweedie (2009), the probability (i.e., the rst
passage probability) that, starting from state , the state process “hits” in nite time
is given by

( ) := { | 0 = } = { =1 ( | 0 = )} (57)

Moreover, the probability that, starting from state , the state process “hits” at exactly
time is given by

{ = | 0 = } =
Z

( 1| 0)

Z
( 2| 1) · · ·

Z
( | 1) ( 1| 2)

(58)
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Finally, the probability that, starting from state , the state process “hits” at any one
time point = 1 2 3 0 between now and 0 is given by

{ 0| 0 = } =
0X
=1

{ = | 0 = } . (59)

Because the Markov transition kernel, (·|·), is globally uniformly countably additive
we also know from Tweedie (2001) that not only does the state space have a Harris
decomposition,

£
=1

¤
but also that

(
£

=1

¤
) = 1 for all .

Thus, no matter where the state process starts, in nite time with probability 1 the process
will reach one of nitely many basins of attraction - and once there will stay there.
Finally, letting

( ) := { 0 2 : 0} (60)

(i.e., the collection of all subsets of players containing the subset ), we will assume that
the equilibrium Markov transition kernel is such that for all := ( ) ,

( × ( )× | ) = 1. (61)

Thus, recalling expression (10) specifying the set of players who qualify for permanent
membership in the set of defaulted players (starting next period) in current state ,

( ) :=
©

: ( ) 0 and ( ) 0 ( )
®

0
ª
,

(61) implies that
( ) ( 0) ( 00), (62)

for the coming state 0 and for all future states 00. Because each basin of attraction is
Harris recurrent and irreducible, expression (62) implies that if = ( ) , then
for any other state 0 = ( 0 0 0) , the set of defaulted players and 0 are equal.
Thus, basin are homogeneous with respect to their default characteristics. We will return
to this fact about basins in the next section when we present our stochastic game model
of nancial network formation.

3.2 A De nition of Systemic Risk Based on the Dynamics of Tem-
porary Financial Networks

Recall that for a non-defaulted player the set of states in which player quali es for
permanent membership in the set of defaulted players is given by,

( ) :=
©

: ( ) 0 and ( ) 0 ( )
®

0
ª
, (63)

where ( ) := ( ) = . Regarding the non-defaulted player, an impor-
tant question to ask is, given the equilibrium behavior of the players - as captured by the
network-valued equilibrium stochastic process, { ( )} , what is the probability that at
some time point in the future an as yet non-defaulted player, \ , will join the
set of defaulted players? This is equivalent to asking, given the underlying equilibrium
state process, { } , what is the probability that the state process reaches in nite time
a state contained in ( ). We note that this is a question about the rst passage prob-
ability - or the hitting probability - for the set of states in which player will qualify
for default (or join the set of defaulted players). With this basic observation in mind -
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and assuming the equilibrium state process, { } := {( )} , is governed by a
globally countably additive Markov transition kernel, (·|·), with basins of attraction,
A := { 1 2 }, what can we say - and more importantly, what can we learn
about systemic risk?
While there is no generally agreed upon formal de nition of systemic risk (a fact noted

and discussed in Glasserman and Young 2015, section 6), there seems to be a widespread
intuitive understanding of it, and researchers can easily point to real world examples of
it (e.g., the nancial crisis of 2008). An informal description of systemic risk would go
something like the following: Systemic risk is a measure of the conditional likelihood that
a system in a particular state will fail if a particular event occurs. Usually, by a particular
event, we mean a ”shock”. Thus if the system is in a particular state and if there is a
shock to the system, then systemic risk is the conditional likelihood that the system will
fail. At the very outset there are three terms in our word de nition which must be given
precise meanings if we are to provide a formal de nition of systemic risk. The rst term
is “system” - what is a system? Here, we represent the “system” as a “network” - a
notion to which we have given a precise de nition. The second term is “state” - what
does it mean for the system to be in a particular state. Here again we have given a precise
de nition of what we mean by a state, as well as what we mean by a network being in
a particular state. The third term is “fail” - what do we mean by fail? Here, we can
substitute the term default for the term fail. Since a nancial network is made of many
interconnected nodes (representing players), what does it mean for the network to fail?
What constitutes a failure? Does it mean that all players (nodes) default, does it mean
that some players default, or does it mean that su ciently many players default to cause
the nancial network to cease functioning. So there are degrees or gradations of network
failure. Here we can take this into account in a very precise way by keeping track of the set
of players who default. There is also the question of what player in the network receives
the shock - and how does a player receive the shock? Where does the shock come from?
- is it generated by the network? Here, shocks are endogenously generated via project
returns (where projects are nodes in our network). Who receives (i.e., which players
receive) the shock is therefore determined entirely by the network structure endogenously
chosen by the players (the nodes). And what is a shock? Here a shock can be viewed
as an extreme realization of project returns. And nally, there are ”things” missing from
the intuitive de nition. Most notably, time. Are we thinking about an immediate failure
of the network due to some shock? - or, are we thinking about the eventual failure of the
network? Our de nition of systemic risk will take into account the timing as well as the
severity of the failure.
In addition to these considerations, our de nition of systemic risk is unique in that it

is based upon the strategic behavior of the players in the game of network formation and
is given explicitly as a function of the underlying equilibrium dynamics. These equilib-
rium dynamics are, in turn, determined by the stationary Markov equilibrium in players’
network formation strategies, ( ), which emerge from the interplay between
the strategic best response behavior of the players, the changing network structure, and
risk. In our view, any measure of systemic risk which fails to take into account equilibrium
dynamics and the feedback between strategic behavior, network structure, and risk will
fail to accurately measure the risk of systemic failure.
We can think of the paths that the equilibrium stochastic state process, { } , can

follow in reaching a particular subset of states, say for example ( ) (see expression
63) above, as part of a larger “transportation” network over which the equilibrium state
will travel in moving from one particular state to a set of di erent states. Carrying
the transportation analogy of equilibrium state dynamics further, we are lead to de ne
endogenous systemic risk as the probability that the equilibrium stochastic state process,
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starting at a given state arrives at a subset of failed states (e.g., ( )), at or before a
given time. Thus, we de ne endogenous systemic risk as the equilibrium rst passage
probability to a subset consisting of failed states starting from a given state - where what
we mean by failed states is speci ed by the requirement that the set of defaulted players
be of a certain composition and size. Our notion of endogenous systemic risk, therefore,
is one inextricably linked to the equilibrium state process determined by the underlying
discounted stochastic game of network formation. Following our approach, rather than
there being a single measure of systemic risk, there is instead a schedule of systemic risk
measures which lists the probabilities of various arrival times at various subsets of failed
states, departing from any given state.4 Now, for the details.
Given the equilibrium state process, { } := {( )} , for each possible nonempty

subset of players, 2 \ , of players, let

( ) :=
©

: ( ) 0 and ( ) 0 ( )
®

0 for
ª
:= ( ).

( ) is the subset of states in which all players in join the set of permanently defaulted
players, starting next period. Thus, if ( ), where = ( ), then we know
that

( ) and +1 = ( )

where recall ( ) is the set of all players who qualify for permanent membership in the
set of defaulted players in state . We also know that +1 and we know that
the new entrants into the set of defaulted players during period [ + 1] are ( )\ .
Thus, +1 = ( ).
Our de nition of endogenous systemic risk is the following:

De nition 2 (Endogenous Systemic Risk)
Given the equilibrium state process, { } := {( )} , the systemic risk that a
subset of non-defaulted players, , in nancial network ( 0) = ( 0 0 0),

\ 0, all qualify for default at exactly time
0, denoted by 0( 0 ( )), is

given by

0( 0 ( )) =
n

( ) = | 0 =
o

The systemic risk that players all qualify for default at any time between now and 0,
denoted by [1 0]( 0 ( )), is given by

[1 0]( 0 ( )) =

0X
=1

n
( ) = | 0 =

o
The systemic risk that players all qualify for default ever, denoted by

[1 )( 0 ( )), is given by

[1 )( 0 ( )) =
n

( ) | 0 =
o
=
X
=1

n
( ) = | 0 =

o
3.3 The Dynamics of Systemic Risk: Basins and Their Spheres

of In uence

The presence of basins of attraction has profound implications for our understanding
of the dynamic behavior of systemic risk, and therefore, for our ability to measure and

4For an excellent survey of what is known about systemic risk with respect to other de nitions of
systemic risk, see Glasserman and Young (2015) - and for an excellent discussion of other notions of
endogenous systemic risk see Zigrand (2014).
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control systemic risk. This is true for two reasons. First, as noted above, the basins
of attraction generated by the equilibrium state process are homogenous with respect to
their default characteristics - meaning, that if a basin contains a state, := ( ),
with defaulted player set, , then all states in the basin will have precisely the same
set of defaulted players - no more, no less. The existence of basins and the strati cation
of basins by default characteristics reduces the di culty of making a global assessment
of systemic risk in any nancial network. Given the current position of the network in
the ”transportation system” and the allocation of defaulted player sets across basins,
the systemic risk of (or the rst passage probability to) each of the nitely many basins
containing defaulted players can easily be calculated. The big picture take away from our
approach is that what is critical in assessing systemic risk in any risky nancial network
is the allocation of default levels across the basins of attraction.
Second, given the equilibrium state dynamics, the pro le of basins of attraction these

dynamics generate comes equipped with a unique set of tipping points and spheres of
in uence. Here, using our de nition of systemic risk, we will formally de ne the notions
of tipping point and sphere of in uence. Intuitively, once the state processes reaches a
tipping point, then with probability 1, the coming state will be contained in the sphere of
in uence of one of two possible basins (possibly a good basin versus a bad basin). Thus,
each tipping point state is the gateway to two di erent spheres of in uence belonging to
two di erent basins. Once the process enters a sphere of in uence belonging to a particular
basin, the process has passed the point of no return with regard to its eventual arrival in
that particular basin, and thus the sequence of future states will lead inexorably to that
particular basin. If the default characteristics of that basin are extremely bad, then this
sequence of future states might best be described as a default cascade. Tipping points,
therefore, are the state dynamic’s early warning system of impending entry into a sphere
of in uence - and if that sphere belongs to a bad basin - of impending doom. A tipping
point that is a point of departure for the state’s journey to a severely failed basin is truly
a systemic state - and such systemic states can be easily identi ed.
Because the set of defaulted players persists and is nondecreasing and because the

equilibrium state process, once it enters a basin of attraction stays in the basin visiting
each state in the basin in nitely often, it follows that if the basin, say basin , contains
a state, := ( ), with defaulted player set, , such that | | = , then all states
in the basin will have precisely the same set of defaulted players consisting of many
defaulted players. We say that such a basin, is a -level basin. We summarize these
observations in the following Theorem.

Theorem 1 (Homogeneity of Default Levels of Basins of Attraction)
Let { } be the state process governed by Markov transition kernel, (·|·), having
basins of attraction

A := © 1 2
ª

For each basin, , there is a unique subset of defaulted players, , such that for all
, 2 ( ) = . Moreover, in state at time , if ( | ) = 1, then

= ( )

Let denote the collection of states in which there are defaulted players (i.e.,
states in which the set of defaulted players is nonempty). We have

:= { : ( ) 6= } = { : | ( )| 0} , (64)

where ( ) := 2 ( ) = 2 . We will refer to the states contained in as
default states. Re ning this a bit, let

:= { : | ( )| = } (65)
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denote the set of states in which there are exactly = 0 1 defaulted players. We
will refer to the states contained in as k-states. Next, let := {1 2 }, be index
set for the set of basins of attraction, A, and let

:= { : 6= }
and

:= { : = }.
Consider subsets of states given by

:= and := (66)

Note that if , then 6= for some {0 1 }, while, due to the
homogeneity of the default characteristics of basins,

0
= for 0 6= . We will call

such a basin a -level basin. Alternatively, if , then is free of defaulted players.
Thus, the state space can be partitioned as follows:

= ,

where for each transient state ,

[1 )( ) + [1 )( ) = 1

If at ,

[1 )( ) = 1

then default is no longer possible because in nite time with probability 1 the state process
will enter a basin of attraction containing no defaulted players - and will remain there for
all future periods. However, if at ,

[1 )( ) = 1

then default is inevitable because in nite time with probability 1 the state process will
enter a basin of attraction containing states having some xed subset of defaulted players.

De nition 3 (A Basin’s Sphere of In uence)
Let { } be the state process governed by Markov transition kernel, (·|·), having
basins of attraction

A := © 1 2
ª

For each basin, , there is a sphere of in uence given by

( ) :=
n

: [1 )( ) = 1
o

(67)

If the process reaches state, , contained in the sphere of in uence, ( ), then in
nite time with probability 1 the process will enter basin . If is a -level basin,
0, then all states in will have a set of defaulted players of size Thus, a -level

default is inevitable once state ( ) is reached. If ( ) where is a
-level basin, 0, then all state paths starting with are referred to as -level default
cascades.
The sphere of in uence of any basin can be small. In fact, it is even possible that a

basin is its own sphere of in uence. Thus for some basins, it is possible that

( ) =
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Now let
( ) := ( )

and
( ) := ( )

The subset of states ( ) is the sphere of in uence of the set of all basins containing
defaulted players, while ( ) is the sphere of in uence of all basins containing no
defaulted players

3.4 Tipping Points, Systemic, and Very Systemic Players

Again, we begin with a de nition.

De nition 4 (Endogenous Tipping Points, Systemic and Very Systemic Players)
Let { } be the state process governed by Markov transition kernel, (·|·), having
basins of attraction

A := © 1 2
ª

(1) (Tipping Points) A state is a tipping point if 1( ( )) 0 and

1( ( )) 0 and

1( ( )) + 1( ( )) = 1 (68)

(2) (Systemic and Very Systemic Players) If for tipping point state, with player
not a defaulted player (i.e., with \ ( )) there is a successor state, 0 , such
that

( 0) = ( ) { }
and

0 ( )

then we say that player is systemic. If there is an -level basin, , containing
states in which all players are defaulted, and if player is such that for some tipping
point state, with \ ( ), there is a successor state, 0 , such that

( 0) = ( ) { }

and
0 ( )

then we say that player is very systemic.

Thus, a very systemic player is a player whose default in a tipping point state
propels the state process into the sphere of in uence of a basin consisting of totally
defaulted players. The default of such a player is catastrophic.
We close this section by noting that if each of the nitely many basins of attraction

contain states with a defaulted player, then = , and

[1 )( ) = 1 for all

In this case, default by some players (but perhaps not catastrophic default) is inevitable
because in nite time with probability 1 the state process will enter a basin of attraction
containing defaulted players.
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4 The Strategic Foundations of Systemic Risk

Our objective now is to construct a game theoretic model of the formation of nancial
networks by farsighted players who, at the beginning of each period [ + 1] (at time ),
after observing the state, , compute their cash ows, , and form a temporary nan-
cial network consisting of a short-term investments network and a short-term borrowing-
lending-repayment network. Because each player seeks to form nancial connections so as
to maximize the sum of the expected discounted future payo s generated by these invest-
ment and borrowing-lending connections, we formulate the problem of network formation
as a discounted stochastic game. From the stationary Markov equilibrium strategies of
the players, we obtain the equilibrium Markov process of network formation as well as
the equilibrium state process.

4.1 Primitives and Assumptions

A non-cooperative -player, non-zero sum discounted stochastic game (DSG) of network
formation is given by the following primitives:

( )| {z }
state space

( ( ) ( · ))| {z }
one-shot game, G( )

(·| ·)| {z }
law of motion

(69)

where player 0 one-shot payo function is given by

( ) := (1 ) ( ) +

Z
( 0) ( 0| ) (70)

Now to the details. We will assume satis es the following list of assumptions:

[A-4] (Discounted Stochastic Games of Financial Network Formation)
Feasible Networks:
(1) is a nite set of players consisting of | | = players.
(2) is the subset of the set of players who are in default during period [ + 1].

(3) ( ) = ( × 2 × × 22 × × × ) is the state space with typical
element := ( ), where is the cash ow vector, is the set of defaulted players,
and is the state of the real economy.
(4) = ( )×G ×G is the space of network proposals (actions) available to player
with typical element := ( 0 1 ) where ( )×G ×G is a compact, convex subset
of +1 × × , with sum metric

( 0) := ( )×G ×G (( 0 1 ) ( 0 00 01 ))

:=
°° 0 °°

+1 +
°° 0 00 °° +

°° 1 01 °° .

For each , we will often denote by ( ) := ( ) a typical feasible
3-tuple of network-representing matrices, ( 0 1), such that for non-defaulted
players, \ , ( ) P( ), while for defaulted player’s, , ( ) = ( 0 0 0).
Note that a defaulted player has zero investable funds and is constrained to choose
network ( 0 0 0), while a non-defaulted player has positive investable funds and also is
allowed to choose network ( 0 0 0).
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(5) (·) is the feasible network proposal correspondence, a measurable set-valued
mapping from the state space into the nonempty, compact, convex subsets of
( )×G ×G given by

( ) := ( ) :=

½
P( ) := ( )× B( )×G

{( 0 0 0)} .
(71)

Because (·) is compact-valued and maps from a separable metric space to a compact
metric space ( )×G ×G , the measurability of (·) is equivalent to (·) having a
measurable graph.
Letting ( ) ×G×G :=Q [ ( )×G ×G ], equip ( ) ×G×G with the sum
metric,

( ) ×G×G( 0) :=
X

( )×G ×G (( 0 1 ) ( 0 00 01 ))

:=
X
=1

¡°° 0 °°
+1 +

°° 0 00 °° +
°° 1 01 °° ¢

,

a metric compatible with the product topology on ( ) ×G×G. Thus, ( ) ×G×G
is the ( ) ×G×G-compact, convex subset of all possible network proposal pro les in
( ) ×G×G with typical element := ( 0 1 ) ( ) ×G×G. Letting

( ) := ( ) := 1( )× · · · × ( ) (72)

( ) is also a measurable set-valued mapping (Lemma 18.4, Aliprantis-Border,
2006) from the state space into the nonempty, ( ) ×G×G-compact, convex subsets of
( ) ×G×G. Letting (·) denote the graph of (·), we have

(·) := ©( 0 1) × ( ) ×G×G : ( 0 1) ( )
ª

(73)

with (·) × ( ) ×G×G
Feasible and Matching Networks and the -Matching Function:

In each cash ow state, , we will assume that corresponding to each pro le
of feasible network proposals, P( ), the feasible and matching network for the
coming period is given by the -matching function, (· ·),

( ) :=

½
0 := ( 0 0 0) if G( )
:= ( 0 1) if G( )

(74)

where recall that for all cash ow -tuples, = ( 1 ), in ,

G( ) := ( ) ×AM( ) := ( ) × (B( ) M)×M.

Let
G(·) := {( ) ×G : G( )}

and
P(·) := {( ) ×G : P( )} ,

where
P( ) := ( ) × B( )×G
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Payo Functions and the Law of Motion:
(6) (· ·) is player 0 real-valued immediate expected payo function de ned on ×G,
such that for each players (i) | ( )| for all ( ) ×G, (ii) (· ) is
measurable on for each G, and (iii) ( ·) is continuous on G for each .
(7) The law of motion is given by,

( 0| ) := ( 0| 0 0) ( ( 0 0)| ) (75)

where stochastic kernel, ( 0 0) (·| 0 0) governs cash ows and stochastic kernel,

(( ) ) (· ·|( ) )

governs the set of defaulted players and real economy states. We will assume the
following:
(a) The law of motion,

(( )| {z } ) (·|( )| {z } )

is such that for any sequence, {( )} , converging to ( ),

( | ) ( | ) (76)

for all nonempty -closed subsets of .
(b) For the stochastic kernel, (· ·|· ·), governing the defaulted player sets and real
economy states, the following assumptions hold:

(i) There exists a product probability measure, × , de ned on (2 × 22 × ) such
that for all ( ) ×G the probability measure (· ·| ) is absolutely continuous
with respect to × . Thus,

(· ·| ) × for all ( ) ×G. (77)

(ii) For all sets 22 × , ( |· ·) is product measurable on ×G.
(iii) For each set of defaulted players, , the collection of probability density functions
on

( ) := { (·| ) : ( ) ×G}
of ( × ·| ) with respect to is such that for each state the function

( 0| ) is continuous on G a.e. [ ] in 0

and
( 0| ( )) is a ne on G a.e. [ ] in 0

(c) For the stochastic kernel, (·|· ·), governing cash ow pro les, the following
assumptions hold:
(i) For all ( 0 0) 2 × the probability measure (·| 0 0) de ned on the cash ow
state space, ( ), is absolutely continuous with respect to the nonatomic
probability measure de ned on ( ). Thus,

(·| 0 0) for all ( 0 0) 2 × .

(ii) For all sets , the function, ( |· ·), is product measurable on 2 × .
(iii) The collection of probability density functions on

:=
©
(·| 0 0) : ( 0 0) 2 × ª

of (·| 0 0) with respect to is such that

( 0 0) ( 0| 0 0)

is measurable on 2 × a.e. [ ] in 0.
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4.2 Comments on the Primitives and Assumptions

4.2.1 Player Value Functions

The key ingredient in analyzing any discounted stochastic game (henceforth, DSG) is the
DSG’s parameterized collection of one-shot games,

G( )( ) ×L . (78)

The importance of this parameterized collection derives from the Theorem of Blackwell
(1965) giving necessary and su cient conditions for the existence of stationary Markov
equilibria in terms the equilibria of this collection of one-shot games. In due course we
will discuss Blackwell’s Theorem in more detail. For now we focus upon the space of
valuation function pro les,

:= ( 1 ) L , (79)

which together with states indexes our collection of one-shot games.
Players in a discounted stochastic game are guided in making their strategy choices by

state-contingent prices or values. For each player , this vector of state-contingent values
is given by a function, : . Taken together, players’ state-contingent value
functions form an -tuple of functions which we will refer to as players’ value function
pro le, := ( 1 ). As in the literature on discounted stochastic games (e.g., see
Nowak and Raghavan, 1992), the space of players’ value function pro les is given by

L := L
1
× · · · × L (80)

where for each player = 1 2 , L is space of -equivalence classes of functions, :
, such that ( ) a.e. [ ]. For each player , is the closed bounded interval,

[ ], the same for each player. Players’ payo s (both immediate and discounted)
reside in the closed, bounded, convex subset, := 1× · · · × = [ ] , and thus,
players’ value function pro les reside in the space, L , a metrizable, weak star compact,
convex subset of L .
Formally, let L1 ( ) := L1 denote the separable Banach space of -equivalence

classes of -integrable functions, : with norm

k k1 :=
R | |

Also, denote by 1 the prequotient of L1 (i.e., the space of all real-valued, integrable
functions), and let

L1 := L1 × · · · × L1| {z }
times

denote the separable Banach space of -equivalence classes of -integrable functions, :
, := ( 1 ), with norm

k k1 =
X
=1

k k1

Next, let L denote the Banach space of -equivalence classes of -essentially bounded
functions, : with norm

k k := sup := inf { : { : | ( )| } = 0} . (81)

L is the norm dual of L1 . Equip L with the weak star topology, denoted by or
(L L1 ). We will denote by the prequotient of L (i.e., the space of all real-valued,
-essentially bounded functions).
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For = 1 2 , let be the closed bounded interval [ ] , and let

L := { L : ( ) a.e. [ ]} . (82)

Equip L with the compact and metrizable relative weak star topology, denoted by
or (L L1 ).5 To x the metric and hence the notation, let be the metric on L
compatible with the weak star topology. Also, let denote the metric on where for
and 0 in , ( 0) := | 0|.
Finally, let := 1 × · · · × and consider the Cartesian product,

L := L
1
× · · · × L (83)

equipped with the the sum metric,

:=
P

=1 (84)

a metric compatible with the relative weak star product topology, , on L , and equip
with the sum metric

:=
P

=1 . (85)

4.2.2 Continuity Properties

We begin with some fundamental results on the continuity properties the law of motion
and players’ payo functions. For each ×L , consider the -valued function,

( ) ( ) := ( 1( 1) ( ))

de ned on G( )×L taking values in . For each player = 1 ,

( ) := (1 ) ( ) +

Z
( 0) ( 0| ) (86)

(1) By part (6) of [A-4]. we have via Sche ee’s Theorem (see Billingsley, 1986, Theorem
16.11) that

( ) ×G×G
implies that

sup | ( | ) ( | )| 0,

(87)

sometimes written k (·| )) (·| )k 0
(2) Under parts (6) and (7) of [A-4] for each cash ow state, , each player’s

expected payo function, ( ) ( ) , is G( )× -continuous in ( )

G( )×L - so that in each cash ow state, , the -valued function,

( ) ( )

is G( )× -continuous in ( ) G( ) × L . In fact, we can say more about the
collection of functions, ( · ) : G( ) , for ( ) ×L . In particular, as has
been shown by Salon (1998), for each state the collection of functions,

{ ( · ) : L } , (88)

5Because the Borel - eld is countably generated, the space of -equivalence classes of -integrable
functions, L1 , is separable. As a consequence, the set of value function -equivalence classes L is a

compact, convex, and metrizable subset of L for the weak star topology (e.g., see Nowak and Raghavan,
1992).
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is uniformly equicontinuous on G( ).6 To see this, let

(·) := (1 ) ( ·)+
Z

( 0) ( 0| ·)

For xed , we have for each L
| ( ) ( 0)|

(1 ) | ( ) ( 0)|

+
¯̄R

( 0| )
R

( 0| 0)
¯̄

Because

( ·) and (·) :=
Z

( 0| ·)
are continuous functions on a compact set, and hence uniformly continuous, for any 2 0
there is a 0 such that for any and 0 in G( ) with

G( )
( 0)

| ( ) ( 0)| 2
and

| ( ) ( 0)| 2 .

4.2.3 The Default and Matching Adjusted Cash Flow Transition Function

By the Corollary in Rao and Rao (1972), because is nonatomic, × × is nonatomic
(see [A-4] (b)(i) and (c)(i).7 Because project portfolios are formed at the beginning
of the period and project returns are realized at the end of the period - and because
borrowing and lending contracts are proposed at the beginning of the period and proposed
repayments are made at the end of the period, each player’s payo is an expected proposed
payo . In order for a player’s expectations to be realized, loanable funds contracts must
be matching. In particular, if at the beginning of the period players’ propose a feasible
network given by := ( 0 1 ) , where

:= ( 0 1) ( ) :=
Y
=1

©£
( )× B( )×G ¤ (1 ( )) + [ 0 0 0] ( )

ª
so that for each

:= ( 0 1 ) ( ) := [ ( )× B( )×G ](1 ( )) + [ 0 0 0] ( ),

then if players’ expectations are to be realized, players’ network proposal must also be
matching. Thus, we must have G( ). Then each player’s end-of-period, state-
contingent cash ow is given by,

+1 := +1

® ¡
[ 0 ( )

®
] 0
¢
+ h ( +1 ) ( )i

6The collection,
{ ( · ) : L }

is uniformly equicontinuous if for any 0 there is a 0 such that for any and 0 in G( ) with

G( )
( 0) ,

( ( ) ( 0 )) ,

for all L .
7 is an atom of relative to (·) if the following implication holds: if ( ) 0, then

implies that ( ) = 0 or ( ) = 0. If contains no atoms relative to (·), is said to be
atomless or nonatomic. Because is a complete, separable metric space (as a closed subset of ) (·)
is atomless (or nonatomic) if and only if ({ }) = 0 for all (see Hildenbrand, 1974, pp 44-45).
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The vector of players’ end-of-period, state-contingent cash ows is given by the vector

+1 := +1

¡
[ 0( ) ] 0

¢
+ ( +1 )

£ ¤
Adopting the -matching function (which, for each current state, , maps feasible net-
work proposals to feasible and matching networks), (realizable) end-of-period, state-
contingent cash ows are given by the vector

+1

:= +1 ( )
¡
[ 0( ) ] 0

¢
+

( +1 ( ))
£ ¤

,

(89)

where ( ) = ( ) is the investments network, 0( ) = 0( ) is the feasible
and matching borrowing-lending network, and 1( ) = 1( ) is the corresponding
matching repayment network.8 Thus, under the -matching function, the (realizable)
expected payo to player under any pro le of feasible network proposals is given by

( ( ) ) := (1 ) ( ( )) +
R

( 0) ( 0| ( )) (90)

At any time cash ows at + 1 +1, are a function of current cash ows, ,
players’s current actions, ( ) := ( 0 1), the stationary default adjustment
function, (· · ·), and risky project returns at +1, +1. Thus, rewriting expression (43)
in abstract vector function form we have

+1 = ( ( ) +1). (91)

If the current state is := ( ), then player 0 immediate expected payo is

( ( )) :=

Z
R

( ( ( ) +1)) ( +1| ), (92)

where ©
( +1| ) : ( ) 2 × ª

is the collection of product measurable probability density functions describing the random
behavior of project returns as a function of the state of the real economy and the set of
defaulted players.
We close this section with a critical observation. If at time in state , player

quali es for the set of permanently defaulted players (i.e., if ( ) or ( )),
then given the nature of the default and matching adjusted cash ow transition function
for player ,

+1 := +1

® ¡
[ 0 ( )

®
] 0
¢
+ h ( +1 ) ( )i

as well as player 0 feasible constraint correspondence,

( ) := ( ) :=

½
P( ) := ( )× B( )×G

{( 0 0 0)} ,

8Thus, we have that, if the a ordable proposed network = ( 0 1) is not match-
ing, then ( ) = ( 0 1) = 0 - and if is matching, then ( 0 1) = .

Also 0( 0 1) = 0 if = ( 0 1) is not matching and 0( 0 1) =
0
if =

( 0 1) is matching. And nally, 1( 0 1) = 0 if = ( 0 1) is not matching and
1( 0 1) =

1
if = ( 0 1) is matching.
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it follows that player will be a member of ( +1) := 2 ( +1) = +1 during the
period [ + 1 + 2], and as a consequence, will re-qualify for membership in the set of
defaulted players, +2, for period [ + 2 + 3]. This is because for player +1,
( +1 +1 +1) = {( 0 0 0)}, implying that 0 ( +1) = 0, and because

( ) :=
©

: ( ) 0 and ( ) 0 ( )
®

0
ª
,

we have

+1 := +1

® ¡
[ 0 ( )

®
] 0
¢| {z }

0

+

*
( +1 )| {z }

0

( )

+
= 0,

implying that +1 ( ) - in turn implying that +2 (recall that := ( )
and thus, := ( 1( ) ( )) and +1 := ( +1)). Letting

( ) := { 0 2 : 0}

(i.e., the collection of all subsets of players containing the subset ), we can conclude
from the above observations that for all ( ) := (( ) ) ×G,

( ( )× | ) = 1 (93)

4.3 Pareto Optimal Matching and Pure Strategy Nash Equilibria

Under the our matching function, pure strategy stationary Markov equilibria are easy to
nd - we need only consider feasible and matching networks having payo s greater than
the payo s to the zero network 0 for all players. Here we will focus on the much smaller
set of Pareto optimal pure Nash equilibria. To begin, let ( ) × L be given and
consider the one-shot game of nancial network formation,

G( ( ·) ) := { ( ) ( ( ·) )} , (94)

with matching function, ( ·). Under the -matching function, ( ·), for each we
have

( ( P( )) ) = ( G( ) )

and for all unmatched feasible networks, P( ( ))\G( ( )), we have

( ( ) ) = ( 0 )

De nition 2 (Feasible, Pareto Optimal Matching Networks)
Given ( ) ×L , let ( )be given. We say that feasible, matching network
is Pareto dominated by feasible, matching network 0 ( ), if

( 0 ) ( ) for all
and

0( 0 0) 0( 0) for some 0

Given L , we say that ( ) is Pareto optimal if it is not Pareto dominated by
any other feasible, matching network 0 ( ). We will denote by PO( ) the set of
all Pareto optimal feasible and matching networks in ( ) corresponding to the one-shot
game, G( ( ·) ).
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Denote by

( )( 0)

:= { ( ) : ( ( ) ) ( 0 ) + for all }
(95)

the collection of all feasible network proposals with expected payo at least greater than
the expected payo of the zero network 0 for all players, . We will assume the following:

[A-5] (The Zero Network, 0 ( ), is Pareto Dominated for Each ( ) ×L )
Given a DSG of nancial network formation satisfying [A-4], with collection of one-shot
games, {G( ( ·) )}( ) ×L there exists an 0 such that for each one-shot

network formation game in the collection,

{G( ( ·) )}( ) ×L

with non-defaulted players, there exists a feasible network,
( )

( ) := ( ),
6= , such that

( (
( )

) ) ( 0 ) + for all \

Note that under the matching function, , all the networks contained in ( )( 0)
are not only feasible, but also matching. Hence, ( )( 0) G( ). Moreover, all the
networks in ( )( 0) are Nash. To see this, consider network

= ( ) = ( 0 1 ) = ([ ] × [ 0 ] 2 [ 1 ] 2) ( )( 0)

Suppose player defects from to
0
. Because the loanable funds network, ( ) , is

matching, we have, + = 0 for all 2 and = 0 or 1 while after the defection,
0 + 6= 0, for some = 0 or 1, and some counter party . Thus 0 G( ),
implying that ( 0) = 0. Therefore, for the defector (who started out in network )
( ( ) ) ( ( 0) ) = ( 0 ). Therefore, ( )( 0) is a

Nash equilibrium.
Consider the set-valued mapping,

( ) ( )( 0) (96)

Under assumptions [A-1]-[A-5] it is easy to show that the correspondence, ( )

( )( 0), is Caratheodory - measurable in and continuous in .
Letting N ( ) denote the set of Nash equilibria of the one-shot game, {G( ( ·) )},

we have for each ( ) ×L

( )( 0) N ( ) G( ) (97)

Next consider the Pareto problem

max
( )

X
( ( ) ) (98)

Under assumptions [A-1]-[A-5]

max
( )

X
( ( ) ) = max

( )( 0)

X
( ). (99)
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Let

( ( ( )) ) := max
( )

X
( ( ) )

and

N( )( 0) =

(
( ) :

X
( ( ) ) ( ( ( )) )

)
(100)

By the measurable version of Berge Maximum Theorem (see Aliprantis and Border, 2006),
we have that the Pareto function, , ( ) ( ( ( )) ), is Caratheodory
- measurable in and continuous in . Moreover, because the set-valued mapping
( ) ( )( 0) is Caratheodory, the Pareto optimal network correspondence,
( ) N( )( 0), is upper Caratheodory - jointly measurable in and , and

upper semicontinuous in . Thus, in each state, , N( · )( 0) is a sub-USCO contained

in the -Nash USCO, N ( ·). We summarize all of this in the following result.

Theorem 2 (The Pareto USCO)
Suppose assumptions [A-1]-[A-5] hold. Then the collection of one-shot games,
{G( ( ·) )}( ) ×L , possesses an upper Caratheodory, Pareto optimal Nash

network correspondence, ( ) N( )( 0), with

N( )( 0) ( )( 0) N ( ) G( ), for each ( ) ×L ,

and USCO part, N( )( 0).

5 Stationary Markov Equilibrium in Network Forma-
tion Strategies

Corresponding to the Pareto optimal Nash network correspondence, N(· · )( 0), there is

a Pareto optimal Nash payo correspondence, P(· · )( 0), where for each ( ) ×L ,

P( )( 0) is given by

P( )( 0) :=
n

: = ( ( ) ) for some N( )( 0)
o

:= ( N( )( 0) ).

(101)

Like N(· · )( 0), the correspondence, P(· · )( 0) is Caratheodory, but taking nonempty,
closed values in . For each value function pro le, L , let

S (P(· )( 0)) := S ( (· N(· )( 0) )) (102)

denote the collection of all × × -equivalence classes of measurable selections of the
Nash payo correspondence, P( )( 0). According to the version of Blackwell’s

Theorem (1965) given in Page (2015), the discounted stochastic game of nancial network
formation speci ed in assumptions [A-1]-[A-5] has a stationary Markov equilibrium in
network formation strategies if and only if the Nash payo selection correspondence, in
this case the correspondence,

S (P(· )( 0))
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has a xed point.9 Moreover, according to results in Page (2015), the Nash payo se-
lection correspondence, S (P(· )( 0)), will have a xed point provided it is a
-correspondence. Because our discounted stochastic game of nancial network forma-

tion game is risky, the Nash payo selection correspondence, S (P(· )( 0)), is

a -correspondence. Therefore, by Page (2015), there exists a pro le of value function-
stationary network strategy pairs, ( (·) (·)) S (P(· )( 0))× S (N(· )( 0)),
where

( ) = ( ( ) ) P( )( 0) a.e.[ ], (103)

and

( ) := ([ ( )] [ 0 ( )] [ 1 ( )]) N( )( 0) a.e.[ ] (104)

Our main result on existence is the following (see Page 2015 for details and a proof).

Theorem 3 (Existence of Stationary Pareto Optimal Markov Equilibrium)
Suppose assumptions [A-1]-[A-5] hold. Then for the discounted stochastic games of
nancial network formation,

( )| {z }
state space

( ( )) ( ( ·) ))| {z }
one-shot game, G( ( ·) )

(·| ( ·))| {z }
law of motion

with collection of one-shot games, {G( ( ·) )}( ) ×L , and -matching function,

( ) ( ) :=

½
0 := ( 0 0 0) if G( )
:= ( 0 1) if G( )

there exists a pro le of value functions, L , and a pro le of stationary Markov
network formation strategies, ( ), forming a Nash equilibrium in space of all
pro les of stationary Markov network proposal strategies.

We have, without loss of generality, ( ) N( )( 0) for all - implying that

( ) G( ( )) for all

where ( ) := ( ) = .

6 Stability Properties of the Dynamics of Temporary
Financial Networks

6.1 Absorbing Sets and Invariant and Ergodic Probability Mea-
sures

A set of states, , is called a -absorbing if ( | ) = 1 for all states, =
( ) . Let L denote the collection of all -absorbing sets. A -absorbing

9It is important to note that by Blackwell’s Theorem (1965) for each player in equilibrium, player ’s
stationary Markov strategy is optimal against defections, not only to other stationary Markov strategies,
but also to all other strategies including history dependent strategies - provided the other players continue
to play their stationary Markov strategies. Thus, the stationary Markov equilibrium, whose existence is
established here, is truly a Nash equilibrium in strategies. This is an often forgotten part of Blackwell’s
seminal 1965 result.
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set L is said to be indecomposable if it does not contain the union of two disjoint
absorbing sets. Note that the set of all absorbing sets is closed under countable unions
and intersections.
A probability measure (·) on the state space ( ) is invariant for Markov transition
(·|·) (i.e., is -invariant) if

( ) =

Z
( | ) ( ) for all (105)

Thus, if probability measure (·) is -invariant, then for any set of states , if the
current status quo state = ( ) is chosen according to probability measure (·)
- so that the probability that lies in is ( ) - then the probability that next period’s
state +1 = ( +1 +1 +1) lies in is also ( ) =

R
( | ) ( ). Denote by I

the collection of all -invariant measure
A -invariant measure (·) is said to be -ergodic if ( ) = 0 or ( ) = 1 for all
L . Denote by E the collection of all -ergodic measures. Because the -ergodic

probability measures are the extreme points of the (possibly empty) convex set I of
-invariant measures (see Theorem 19.25 in Aliprantis and Border 2006), each measure
(·) in I can be written as a convex combination of the measures in E .

6.2 Visitations Times

The number of visitations by the state process { } to the set of states , is given
by

:=
X
=1

( ), (106)

where ( ) = 1 if and zero otherwise. Thus, the expected number of visitations
to starting from state = ( ) is given by

( ) := [ ] =
X
=1

( | ) (107)

The probability that the state process { } visits in nitely often (denoted by i.o.) is
given by

( ) := { i.o.| 0 = } = { = | 0 = }

= { 0=1 = 0 ( | 0 = )} for all
(108)

By Proposition 9.1.1 in Meyn and Tweedie (2009), if for any , ( ) = 1 for
all , then

( ) := { | 0 = } = ( ) for all . (109)

6.3 Recurrence, Transience, and Irreducibility

The set of states is recurrent if

( ) := [ ] =
X
=1

( | ) = +

By Proposition 8.1.3 in Meyn and Tweedie (2009), for any state ,

( { }) = + if and only if ( { }) = 1.
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A set of states is transient if (i) is the disjoint union of countably many
uniformly transient sets , that is, sets such that = and if (ii) for each
set there is a nite constant , such that for all states ,

[ ] =
X
=1

( | ) (110)

The set of states is said to be -inessential if

( ) = 0 for all (111)

Thus, a set of states, , is inessential if the probability that the state process visits the
set in nitely often is zero stating from any state. If a set of states is inessential, then if
the process visits the set at all, it leaves the set for good after nitely many moves. The
union of countable many inessential states is called an improperly -essential set Any
other set is called properly -essential
Finally, the state process { } governed by (·|·) is said to be -irreducible if for

some probability measure (·) on ,10

( ) 0 implies ( ) 0 for all .

Thus if the process { } governed by (·|·) is -irreducible, then it hits all the “impor-
tant” sets of states (i.e., the sets such that ( ) 0) with positive probability
starting from any . The state process { } governed by (·|·) is said to be
-recurrent if,

( ) 0 implies ( ) = 1 for all .

In addition to modeling the emergence of state-network dynamics from the feedback
between strategic behavior, nancial network structure, and risk, one of our main ob-
jectives is to study the stability properties of the resulting equilibrium state process as
well as the implications of these stability properties for endogenous systemic risk. A key
component of our analysis is the notion of a dynamic basin of attraction. Intuitively, a set
of states is a basin of attraction if the state process { } reaches in nite time
with probability 1 and once there, stays there. The question we wish to answer is this:
does the state process { } that emerges from the equilibrium interplay of strategic be-
havior, network structure, and risk generate basins of attraction. We begin by considering
the classical notion of a Maximal Harris set of states.

6.4 Dynamic Basins of Attraction: Maximal Harris Sets

A set of states is called a maximal Harris set if there exists some probability
measure (·) on such that ( ) 0,

( ) 0 implies ( ) = 1 for all ,
and

( ) = 1 implies that

Note that a maximal Harris set is a maximal absorbing set and is indecomposable. More-
over, if and 0 are distinct Maximal Harris sets, then they are disjoint. Finally, note
that if the state process reaches a particular Harris set then it remains there for all future

10Here, the probability measure (·) is a maximal irreducibility measure (see Section 4.2.2 in Meyn
and Tweedie, second edition, 2009).
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periods. By Proposition 9.1.1 in Meyn and Tweedie (2009), because we have ( ) = 1
for all ,

( ) = ( ) = 1 for all .

Thus, if the set of states is maximal Harris, then process { } restricted to is -
irreducible and Harris recurrent - where Harris recurrence means that ( ) = 1 for
all .
The fact that a maximal Harris set is a maximal absorbing set makes it a good can-

didate for a basin of attraction. But in order to fully qualify as a basin of attraction we
must show that - or identify conditions under which - the state process reaches such a set
in nite time with probability 1.

6.5 The Fundamental Conditions for Stability: Drift and Global
Uniform Countable Additivity

Given the equilibrium Markov state transition (·|·) what can be said concerning sta-
bility? What conditions guarantee that the equilibrium state process, { } , reaches a
Harris set in nite time with probability 1. It turns out that the Tweedie Conditions
(2001) do just that:

The Tweedie Conditions (2001):
There exists a measurable set of states , a nonnegative measurable function

(·) : [0 ]

and a nite real number such that
(1) (the drift condition) for allZ

( 0) ( 0| ) ( ) 1 + ( )

and
(2) (uniform countable additivity) for any sequence { } decreasing to (i.e.,

),
lim sup ( | ) = 0

We say that the Markov transition (·|·) satis es global uniform countable additivity
if for any sequence { } decreasing to (i.e., ),

lim sup ( | ) = 0 (112)

and we will say that the Tweedie conditions are satis ed globally if both conditions (1)
and (2) hold with =
Using results due to Meyn and Tweedie (2009), Tweedie (2001), and Costa and Dufour

(2005), we will show below that if the equilibrium Markov transition (·|·) governing
the equilibrium state process, { } , is globally uniformly countably additive, then the
equilibrium process possesses a nite set of basins of attraction.
We have our main result on global uniform countable additivity.

Theorem 4 (Global Uniform Countable Additivity)
Suppose assumptions [A-1]-[A-5] hold. Then (·|·) is globally uniformly countably
additive
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Proof. : Let

×( ( )×G×G)( ) := { (·| ) : ( ) × ( ( )×G×G)} .

We will show that ×( ( )×G×G)( ) is sequentially compact in the ( ( ) B ) topol-
ogy.11

By the compactness of × ( ( )×G×G), for any sequence

{ (·| )} ×( ( )×G×G)( )

there is a subsequence, { (·| )} such that ( )
×( ( )×G×G)

( ) im-

plying by assumption [A-4](7a) that for all

( | ) ( | ) ×( ( )×G×G)( )

Thus, for each B , we haveZ
( 0) ( 0| )

Z
( 0) ( 0| ).

Thus, ×( ( )×G×G)( ) is sequentially compact in the ( ( ) B ) topology. By
Corollary 2.2 in Lassere (1998), (·|·) is globally uniformly countably additive. In
particular, letting { } be any decreasing sequence(i.e., ) and { (·)} be
the sequence of functions in B where for each , ( ) := ( ) B , we have by
Corollary 2.2 in Lassere (1998) that the sequential compactness of ×( ( )×G×G)( )
implies that

lim sup
( ) ×( ( )×G×G)

Z
( 0) ( 0| ) = lim sup

( ) ×( ( )×G×G)
( | ) = 0

Thus, because

sup
( ) ×( ( )×G×G)

( | ) sup ( | ( )) 0

we have
lim sup ( | ( )) = lim sup ( | ) = 0

By Theorem 2, under assumptions [A-4] the equilibrium Markov transition (·|·)
governing the process of network and coalition formation is globally uniformly countably
additive. Moreover, letting = , ( ) = 1 for all , and = 2, the drift condition
is also satis ed. Thus, under assumptions [A-4] especially (7a), we are able to conclude
in Theorem 2 that the Tweedie conditions are satis ed globally (i.e., with = ).

7 Basins of Attraction, Invariance, and Ergodicity

We now have our main result concerning stochastic basins of attraction and the stability
of the equilibrium state process { } governed by (·|·).

11 ( ) is the Banach space of nite signed Borel measures on ( ) and B is the Banach space
of -equivalence classes of real-valued, bounded measurable functions on ( ).
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Theorem 5 (Basins of Attraction: The Finite Decomposition of the State Space - a
variation on Tweedie, 2001 )
Under assumptions [A-1]-[A-5] the equilibrium state process, { } , governed by the
equilibrium Markov transition (·|·) = (·|· (·)) generates a decomposition of the
state space into a nite number of disjoint basins of attraction and a disjoint transient
set. In particular, this decomposition is of the form

=
¡

=1

¢
, (113)

where each is a basin of attraction (i.e., maximal Harris) and is transient, and has
the property that for every state

( ) =
© | 0 =

ª
= 1. (114)

Because in our model the Tweedie conditions hold globally, it follows from Theorem 2
in Tweedie (2001) that the entire state space admits a nite decomposition,

=
¡

=1

¢
consisting of a nite number of indecomposable, Maximal Harris sets, and a transient
set . The key step in establishing this nite decomposition is to show that because the
equilibrium Markov transition,

(·| ) := (·| ( ))

is globally, uniformly countably additive (see Theorem 3 above), the state space contains
at most a nite number of disjoint absorbing sets (see Tweedie 2001, Lemma 2). Moreover,
by Theorem 2 in Tweedie (2001), this decomposition is such that ( =1 ) = 1 for
all . Thus, the state process, { } , governed by the equilibrium Markov transition,
(·|· (·)), is such that no matter where the process begins (no matter what state is the
starting point), it reaches in nite time with probability 1 one of nitely many basins of
attraction, , and once there, stays there. Thus, our Theorem 4 is a network formation
game rendition of Theorem 2 in Tweedie (2001) based upon the fact that the equilibrium
Markov transition, (·|· (·)), is globally uniformly countably additive.
Our next result establishes that the equilibrium Markov transition possesses a nite

number of ergodic measures, one for each basin of attraction.

Theorem 6 (Invariance and Ergodicity of the Process of Network and Coalition
Formation - also a variation on Tweedie, 2001)
Suppose assumptions [A-1]-[A-5] hold. Let { } be the equilibrium state process
governed by the equilibrium Markov transition (·|·) = (·|· (·)), and let

=
¡

=1

¢
,

be the corresponding nite decomposition of the state space into basins of attraction.
The following statements are true:
(1) Corresponding to each basin of attraction , there is a unique -invariant
probability measure (·) with ( ) = 1. Moreover, for each state = ( ),

( )( | ) := 1X
=1

( | )
X
=1

( ) ( ), for all (115)

where ( | ) is de ned recursively, see (55).
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(2) The set of all ergodic probability measures is given by

E = { (·)} =1
Moreover, a probability measure (·) on ( ) is -invariant, i.e. (·) I , if and
only if (·) is given by

( ) =
X

( ) ( ), for all (116)

(3) E is a singleton (i.e., E = { (·)}) if and only if the state process { } is
-irreducible, in which case for each state = ( ) and for every set of states

1X
=1

( | ) ( ).

Proof. (1) Under our assumptions [A-1]-[A-5] (see the proof of Theorem 4 above), (·|·)
satis es the Tweedie conditions globally. As a result, the rst statement in part (1) is an
immediate consequence of Lemma 5 in Tweedie (2001). The second statement also follows
from the fact that in our model the Tweedie conditions hold globally and Theorem 1 in
Tweedie (2001) (also, see Chapter 13 in Meyn and Tweedie 2009).
(2) Again because the Tweedie Conditions are satis ed globally, the rst statement in

part (2) follows from Lemma 2 in Tweedie (2001), Theorem 2.18 part (1) in Costa and
Dufour (2005), Theorem 3.8 in Costa and Dufour, and the proof of Proposition 5.3 in
Costa and Dufour. The second statement in part (2), that (·) I implies (116), follows
from the proof of Proposition 5.3 in Costa and Dufour (2005). The fact that (116) implies
(·) I follows from observation (but also, see Theorem 19.25 in Aliprantis and Border
2006 and Theorem 2 in Villareal 2004).
(3) Finally, because the Tweedie Conditions are satis ed globally, necessary and suf-

cient conditions for E to be a singleton, given in terms of -irreducibility follow from
Theorem 3 in Tweedie (2001). The convergence result in part (3) follows from the con-
vergence result in part (1) of the Theorem and the fact that if there is only one basin
of attraction (i.e., one maximal Harris set), then by Theorem 3, ( ) = 1 for all

Note that the probability measures in E are orthogonal (i.e., the ergodic measures
live only on the basins of attraction) that is, for all and 0 in {1 2 } with 6= 0

( \ ) = 0 ( ) = 0
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